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Abstract. With the rapid growth of the Internet of Things (IoT ), the
deployment, management, and identification of IoT devices that are con-
nected to networks become a big concern. Consequently, they emerge as a
prominent challenge either for mobile network operators who try to offer
cost-effective services tailored to IoT market, or for network adminis-
trators who aim to identify as well reduce costs processing and optimize
traffic management of connected environments. In order to achieve high
accuracy in terms of reliability, loss and response time, new devices real
time discovery techniques based on traffic characteristics are mandatory
in favor of the identification of IoT connected devices.
Therefore, we design GBC−IoT , a group-based machine learning ap-
proach that enables to identify connected IoT devices through network
traffic analysis. By leveraging well-known machine learning algorithms,
GBC−IoT framework identifies and categorizes IoT devices into three
classes with an overall accuracy equals to roughly 99.98%. Therefore,
GBC−IoT can efficiently identify IoT devices with less processing over-
head compared to previous studies.

Keywords: Internet of Things, network traffic characteristics, machine
learning algorithms.

1 Introduction

Recent long range radio transmissions enable affordable IoT solutions for under-
served areas [1] [2]. According to Africa, smart cities and/or smart territory
enable new opportunities for tackling urban explosion challenge.

Smart cities were originally designed to solve urban planning and sustainable
development problems according to northern countries cities. Leveraging IoT
networks in Africa can facilitate transport mobility, reduce energy consumption
and offer optimal and innovative solutions for waste management and sanitation.
Recently, Africa has registered many smart city projects that plan to develop by
rapidly reducing the technological divide that affects the continent [3]. Recent
works center on the deployment of IoT communication solutions for low-income
developing countries [1] [2] [4].

Former works have mainly focused to deploy low cost networks which are
mandatory within these under-served countries. Therefore, smart cities or terri-
tories are equipped by a lot of devices that need to be deployed and managed
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efficiently. Thus, it is useful to monitor IoT traffic characteristics in order to
propose performance levels that meet current realities requirement. For instance,
realities regarding to Quality of Service (QoS).

To meet this challenge, connected network devices type should be known.
It is worth noticing that existing identification and classification proposals are
based on unitary approaches and these methods are not suitable for wider IoT
network such as smart cities or territories, which support an important number of
devices. Consequently, approaches that are suitable for selected agglomerations
that host heterogeneous IoT devices should be defined.

In fact, devices categorization can provide an adequate level of QoS by con-
taining multicast traffic (unnecessary broadcasting) and reducing their impact
on other applications. It also allows administrators to scale their networks ac-
cording to appropriate performance levels in terms of reliability, loss and latency
necessary for environmental, health or security applications. Furthermore, it can
avoid congestion by adapting traffic load according to each devices category
requirement.

In order to provide an efficient classification model, we seek to monitor either
traffic features that as substantive as possible within network topology (physical
or logical), or features which have already shown their effectiveness in previous
works [5], [8], [9], [12].

Therefore, the GBC IoT framework contributions are as follows:

– According to traffic generated by devices, it enables to accurately classify
devices with respect to their behavior

– It takes into account the presence of a huge and heterogeneous IoT smart-
Network devices

– It avoids classification based on no reliable traffic features often done by
previous works such as DNS queries [5], TCP sessions length [6] [7] and
traffic Active volume [8].

The rest of this paper is organized as follows: Section 2 reviews the related
work on this field. We present in Section 3 our experimental setup. A grouped-
based device classification approach with Machine Learning techniques is per-
formed in Section 4. Section 5 discusses our contributions according to previous
works. Finally, Section 6 concludes our paper.

2 Related Works

Former works like [8], [9], [12], [13] propose methods to identify IoT device
based on various features embedded in generated traffic. Nevertheless, they have
not take into account the impact of existing uncertainties linked to traffic: from
features selection to end user behaviour.

Authors in [6] and [7] use ML approaches to identify IoT devices from net-
work traffic analyzing. They aim to decide device reliability to join a secure
network. The targeted features are optimal length of TCP sessions. We do not
consider this approach, since features such as session length and intersession
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duration are strongly dependent on fixed timeout value which can be arbitrar-
ily assigned to individual schemes. In addition, obtaining complete TCP flow
requires waiting for the end of the session to be able to extract all the func-
tionalities from flow. Devices such as Nest security camera TCP sessions can
sometimes last several hours or days [5].

Motivated by privacy concerns, Apthorpe et al., illustrated how an Internet
service provider (ISP ) can infer the type of connected IoT device by traffic anal-
ysis [11]. Nevertheless, they only use a limited, stable and rather “predictable”
number of device in terms of traffic (hub, camera and sleep monitor). Proposed
approach also depends on a single feature: domain of DNS queries. Neverthe-
less, devices such as Amazon Echo and Triby Speaker deal with several home
automation devices and this diversity gives them strong dynamic network be-
havior. These devices can communicate with an increasing number of Internet
nodes which the designer cannot define in advance [15].

Miettinen et al. present a method to identify connected IoT device type
in order to constrain vulnerable devices communications [12]. They use a wide
variety of features extracted during configuration phase. However, this approach
can not be used if device configuration phase is missed.

An identification based on MAC addresses is not efficient since potential
attacker can usurp MAC addresses of compromised IoT device [16]. Indeed,
although MAC addresses can be used to identify the manufacturer of a particular
device, to our knowledge, there is no established standard for identifying the
brand or type of a device based on its MAC address. Some approaches focus
on identifying specific hardware characteristics or drivers (e.g. [17]) to recognize
IoT device. Notwithstanding, such approaches are not efficient, since the same
hardware or driver components can be deployed in wide variety of devices.

The authors of [5], [15] proposed a mixed characteristics in order to identify
IoT devices. According to performance concern, ML approach is used to find the
minimum number of packets necessary for early identification of Internet traffic
in [18].

Nevertheless, previous works with respect to overall accuracy (99.9% in [5],
99% in [12] and [9], 95% in [8]), do not carry out fine IoT devices character-
ization that takes into account error related to the choice of features and the
unpredictability linked to different factors such as applications, materials and
traffic load [19]. In fact, according to working days and hours, autonomous com-
munication protocols, devices add/remove or frequent firmware updating are
other factors that alter network behavior. The entire dataset needs to be trained
each time these last two cases (add/remove or update) occur in the environment
in order to take account these changes.

The work done in [10] is one of the first large-scale study to explore the na-
ture of M2M traffic. It compares M2M and traditional smartphone traffic from
different perspectives: time variations, mobility, network performance, generated
traffic volume, etc. The authors of [10] do not take into account the complexity
(huge quantity of data) of the “new” IoT devices existing on the market today.
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The works in [8] and [9] use ML techniques to characterize IoT devices within
a smart network. However, they consider more features and they do not take into
account privacy concerns. Traffic active volume is used in [8] to cluster IoT at-
tributes and it cooperates in IoT devices classification. However, for device such
as “Netatmo Welcome”, we see that traffic Active volume feature is dependent
on working days/times and used protocols, therefore, this attribute cannot be
considered as a reliable classification indicator.

3 Experimental setup

3.1 Dataset description

The used datasets come from daily traffic captured in a campus network set up
as a “Smart environment”. These traces are proposed by A. Sivanathan et al.,
[9] and are formed by a set of 28 IoT devices. Traffic is captured and stored on
the Internet via “TP Link Archer C7 ” Gateway flashing with the “OpenWrt”
firmware.

Table 1. Iot devices composing overall traces classified by types.

Devices Types

HP Printer, PIX-STAR Photo-frame, Hello Barbie Others

Chromecast, Triby Speaker Multimedia

Smart Things, Amazon Echo Hub

Belkin Wemo switch, TP-Link Smart plug, iHome, Belkin
wemo motion sensor

Switches & Triggers

Withings Smart scale, Blipcare Blood Pressure meter,
Withings Aura smart sleep sensor

Healthcare

NEST Protect smoke alarm, Netatmo weather station Air quality sensors

LiFX Smart Bulb, Philips Hue lightbulb Bulbs

Belkin NetCam, Ring doorbell, August doorbell camera,
Canary camera, TP-Link Day Night Cloud camera, Sam-
sung SmartCam, Dropcam, Insteon Camera, Withings
Smart Baby Monitor, Netatmo Welcome

Cameras

Devices that make up this environment and on which our study will focus are
presented in Table 1. On this day, traces are available for free download at
http://149.171.189.1. A more detailed explanation of the environment configu-
ration and the data collection method is presented in [12].

3.2 Dataset preprocessing

A first approach is to use the PCAP files of daily captured traces of September
27th called Dataset-1, September 30th called Dataset-2, and October 2nd 2016
called Dataset-3. We then made an analysis at two levels: Packet levels with the
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“tShark” utility and “CICFLOWMETER” [18] for flow level. “CICFLOWME-
TER” is a bidirectional network traffic flow generator tool written in Java. It
offers more flexibility in the choice of studied features, add of new features and
increased control of the flow delay time. It is free and public accessible, it analy-
ses PCAP files larger than 100 MB and provides a CSV file with visual analysis
report of 84 network traffic features. Here is what motivates his choice.

Fig. 1. Datasets preprocessing steps.

Raw network traffic is preprocessed to extract bidirectional flows. Flows is
described by set of features such as flow duration, total size of packets (bidi-
rectional), active/idle time, source/destination IP, packets inter-arrival time,
protocol and ports, etc. It gives an overview of a coexistence of two types of
devices (“IoT/non IoT”) in the same environment.

We define “IoT” device as being a device intended to perform a specific
task, unlike “non IoT” device such as: laptops, desktops or smartphones. With
the help of MAC addresses, we split traffic by type of devices and by entity
(unique device). We then separate each portion of obtained traffic. It facil-
itates labelling both unique and groups of devices data. For instance, label
“IoT F lows” groups together PCAP/CSV files containing traces coming from
the network traffic generated only by IoT devices. While ”Amazon F lows” con-
sists of PCAP/CSV files with flows coming from the network traffic generated
by the Amazon Echo device. Finally, we used the Timestamp feature to or-
der flows in chronological arrival. Fig. 1 illustrates the different steps it order
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to extract flows. For the rest of our work, data analysis and visualization are
performed using the “PYTHON ” scikit-learn libraries in Jupyter Notebook and
t-SNE.

We propose a classification approach which studies bidirectional flows character-
istics for each of the 28 testbed devices. For this end, 6 ML algorithms are used
(ANN , k-NN , DT , GBN , RF , SVM ). It aims to classifying devices according
to category to which their behaviors are closest. Finally, algorithms that reach
the greatest precision are those chosen as best suited to our model.

Fig. 2 describes our approach. The choice of these 6 algorithms is motivated
by the fact that it is significant to have an overview of all aspects of the stud-
ied datasets. Indeed, in a test environment, each of these algorithms has these
strengths and weaknesses based on different types of scenarios: For example,
DT is too sensitive to small changes in the training dataset [20], while SVM and
RF are insensitive to noise or overtraining, and thus, has ability to deal with
unbalanced data. This is a good choice when different datasets are processing.
According to k-NN classifier, while it is less sensitive with imbalanced training
sample data, the training sample size had a strong impact on the accuracy of
classification [21]. Moreover, the choice of a good value of k can be beneficial.
All these above factors mentioned (including parameters choice) must be take
into account to hope for a good performance level in various processed datasets.

Fig. 2. Experimental processing approach.
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3.3 Testbed architecture

We use Dataset-1 to train a classifier with algorithms above. It is the one that
present less missing values which can affect the training process. We then ran-
domly splits it into training (90% of total instances) and validation (10%) sets.

Our model is obtained by considering reached accuracies values. The clas-
sification process is repeated 10 times to tuned hyper parameters for most of
the 6 algorithms. Afterwards, we considered ANN , RF , SVM algorithms that
best perform. Finally, independent new test datasets are collected (Dataset-2,
Dataset-3) from spanning days (October 27th & October 30th), that have not
been seen before. These datasets are used for devices categorization purposes.
Devices are categorized two times from each dataset to get their final class. The
best classification accuracy value is adapted. This value depends on both the
combined results of algorithms and on the best reached performance according
to the final datasets (Dataset-2 and Dataset-3).

4 Experimental results

4.1 Leveraging hybrids features

Generally, two features combined are able to carry more traffic identification
information than a single one [22]. The term “hybrid features” refers to a group
of two or more traffic features in the hope of obtaining high precision in traffic
identification. Features such as packet size and inter-arrival times have proven
to be effective in many IoT devices or applications identification works [5], [22],
[23].

A proposed model is based on hybrid features. As seen above, a precise
identification of IoT device based on only one feature is difficult if not impossible
because of traffic’s various interfering factors. Hybridization lets us show specific
shared behaviors in group of given devices. Table 2 illustrates an overview of the
list of devices that share common characteristics.
According to Table 2, each index G1, G2 and G3 constitutes a particular group
based on exposed fingerprints. Firstly, we observe that some devices share func-
tionalities that we characterize as stationary; These devices use a local gateway

Table 2. List of devices sharing common characteristics.

Index Devices

G1 Smart Things, Withings Smart Baby Monitor, Netatmo weather station,
Withings Smart scale, Withings Aura smart sleep sensor, HP Printer

G2 Netatmo Welcome, TP-Link Day Night Cloud camera, Samsung Smart-
Cam, Drop-cam, Insteon Camera, Belkin Wemo switch, TP-Link Smart
plug, iHome, Belkin wemo motion sensor, NEST Protect smoke alarm,
Blipcare Blood Pressure meter, Lightbulbs, LiFX Smart Bulb, PIX-STAR
Photo-frame, Nest Dropcam

G3 Triby Speaker, Amazon Echo
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as a DNS resolver and communicate with a single DNS server throughout their
activities (network lifetime). In fact, considering factors can distinguish their
traffic. Most of these devices communicate with their associated DNS server
via a range of source ports. In fact, only 20% of them use specific source ports
number. For instance, “Netatmo weather station” uses local gateway address as
a resolver and communicates with a single DNS server “netcom.netatmo.net”
with destination port 25587. “Withings Smart scale” receives DNS responses
from the server “scalews.withings.net” through the local gateway. This group
of devices with similar behavior is listed as index G1 in Table 2.

The index G2 group devices class displaying behaviors depending on gener-
ated traffic destination; external (destination outside the local network (inter-
net)) or internal (see Table 2). It constitutes our second observation. Externally,
these devices communicate with their STUN servers via arbitrary IP addresses
and a range of port numbers between TCP 3205 and TCP 4603. Internally, they
use mDNS as name resolution protocol through UDP port 5353. The mDNS
protocol is intended to resolve host names to IP addresses in small networks
with no local DNS server.

According to second observation, the fingerprints exposed by the external
communications protocols (STUN) and local mDNS allows to determine this
second group of devices. Due to the instability of this devices, it cannot be
precisely defined because, device such as Amazon Echo deals with several home
automation devices (Belkin Wemo, SmartThings, Insteon, etc.). This gives them
a dynamic network behavior. [15] shows that these devices can communicate
with an increasing number of internet nodes which the designer cannot define in
advance. Indeed, G3 index with respect to Table 2 illustrates such situation.

Furthermore, thanks to a careful observation of traffic, we were able to obtain
a first distinction object for studied IoT devices. This distinction is based on the
use of a hybrid model and allows us to define the presence of three categories
of device in our traces. However, this is far from sufficient since, despite obser-
vations on which Table 2 is based, we find factors that remain similar between
devices of different groups. For instance, a couple of devices, tagged by index G1
and G2 in Table 2, use the source port 49153 in their external HTTP communi-
cations (iHome, Withings Smart scale, Samsung SmartCam), while others use it
to communicate internally (Belkin Wemo switch, Belkin wemo motion sensor).
Amazon Echo distinctly shares the same NTP server with LiFX Smart Bulb and
Insteon Camera. An invariant port number is used in XMPP communications
(TCP 5222) for Withings Aura smart sleep sensor, HP Printer and Samsung
SmartCam.

This similarity calls for a better refinement of our model in order to dispel
the confusion between devices. For that, focus on characteristics more suitable
to the devices traffic footprint, thus important traffic features are extracted first
to avoid overfitting in data as described in next section.

Since sensors behavior is very application specific, we therefore believe that
total size of sent or received packets (TotLen Pkts) is a common communication
feature that can be assigned to any device with a sensor. In addition, TotLen Pkts
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Table 3. Best selected features and its weight.

Features weight

Bwd Pkt Len Max 0.01165

Bwd Pkt Len Std 0.00036

Flow Byts/s 0.00056

Flow Pkts/s 0.00648

Flow IAT Mean 0.00879

Flow IAT Max 0.00827

Flow IAT Min 0.00321

Fwd Header Len 0.00539

Bwd Header Len 8e-05

Fwd Pkts/s 0.01853

Pkt Len Max 0.00195

Pkt Len Mean 0.01459

Pkt Len Std 0.02289

Pkt Len Var 0.02309

Pkt Size Avg 0.05113

Init Bwd Win Byts 0.08353

and inter-arrival times (IAT ) have proven their effectiveness in numerous works
and specifically in [24], authors have shown that packets from an early stage of
Internet flow can contain enough information for traffic classification.

4.2 Traffic features selection

We maintain total packet size (TotLenBwdPkts) and inter-arrival time (FwdI-
ATMean) features and apply dimensionality reduction techniques to the rest of
traffic. It aims to find not only the most important features after those already
chosen but also to exclude redundancies into the data and classifiers overtraining.
This makes data easily interpretable and increases computational performance.
These techniques also avoid an arbitrarily revoking of features which may prove
to be relevant in the definition of a specific group of devices. We use the “Ran-
domForestRegressor” class of scikit-learn to get 16 from 80 features extracted
before. Table 3 illustrates the obtained set of features as well as associated weight.

In fact, results presented in Table 3 illustrate that the total number of re-
ceived bytes within an initial time window (Init Bwd Win Byt), as well aver-
age packets size (AvgPacketSize), variance packet length (Pkt Len Var), and
standard deviation packet length (Pkt Len Std) are the most suitable features
according to device category detection. According to the remainder of our anal-
ysis, we have grouped these 4 best features above to those already maintained
(TotLen-BwdPkts FwdIATMean) and then we empirically reduce this number
in order to obtain better performance with a minimum number of features, i.e.
we repeated testbed processing by reducing the number of features and writing
down the observed classification accuracy values.



10 A. Bassene and B. Gueye

Our experimental results reach overall accuracy of 99.98% with a minimum
of 3 features (TotLen Bwd Pkts, Fwd IAT Mean, Init Bwd Win Byts). The final
features that best describing traffic behavior are then used to form six different
ML classifiers in order to predict group (class) to which each IoT device in the
dataset belongs (strongly close). Three classes are defined; CWMS , CAEC and
CSSC to represent devices whose traffic behavior is closest to that of the following
IoT devices traffic in the respective order: Wemo motion sensor (WMS), Ama-
zon Echo (AEC) and Samsung SmartCam (SSC). The choice of these classes
is based on the similarity observed in Table 2 and on the fact that these devices
traffic admit features of almost all the environment equipment.

Belkin Wemo Motion Sensor (WMS) is a motion detector that combines
traffic with that of several devices; switches, bulbs and multimedia (Belkin wemo
switch, switching on and off a television, a bulb, a hi-fi system, a radiator, a
fan, etc.). Amazon Echo (AEC) is a connected speaker working with home au-
tomation equipment; i.e. Air quality sensors (Temperature display, temperature
regulator), heater, WiFi IP Surveillance camera, LED bulb, Healthcare: Omron
connected blood pressure monitor (Monitoring of morning hypertension, Detec-
tion of irregular heartbeats, Detection of body movement, visceral fat, BMI and
metabolism rest). Samsung SmartCam (SSC): HD video camera, two-way talk
feature, motion and audio detection, night vision, etc.

In addition, these devices traffic admit less missing data (verify by chronolog-
ical timestamp values and Pandas “isna()” method) among devices in the same
index. Artificial Neural Networks (ANN ), k-Nearest Neighbors (k-NN ), Deci-
sion Tree (DT ), Naive Bayes (GNB), Random Forests (RF ), Support Vector
Machine (SVM ) classifiers are used in our simulations.

We then assess the effectiveness of our classifiers by applying them to an
independent new test datasets. We repeat this experiment on new datasets in
order to consolidate ours results.

4.3 Data visualization

This section studies IoT devices activity defined by the 18 traffic features pre-
viously obtained. For each devices category, we extract these features in a new
dataset. Differentiation can be noticed by visualizing the proximity between our
data points. It enables to get an insight of their reconciliation and to assess the
discriminating aspect of proposed model. We want to visualize the role played
by selected features and their effectiveness to differentiate traffic generated by
each class of devices.

Fig. 3 describes data visualization results using t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) algorithm. It should be noted that according to tags
illustrated in Fig. 3, “SSC” means Samsung SmartCam, “WMS” means Wemo
motion Sensor, and “Aec” means Amazon Echo.

t-SNE is a non-linear dimension reduction technique which is particularly
well suited to visualize large datasets. It is widely applied in image processing,
NLP , genomics data and speech processing. t-SNE is an unsupervised machine
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Fig. 3. Data visualization with t-SNE.

learning algorithm that attempts to represent similar data points next to each
other while preserving the overall structure of the dataset.

We can note that Fig. 3 depicted data points form visual clusters correspond-
ing to network traffic generated by different categories of IoT devices. Indeed,
most data points for same IoT device are close to each other, while data points
for different IoT devices are far apart. Our findings exhibit that selected features
are effective enough to discern these three devices classes.

4.4 Classification

Classification Results. For classes CWMS , CAEC and CSSC , devices are clas-
sified using following metrics:
Accuracy: means the proportion of correctly classified flows.
Precision: exhibits the ratio TP/(TP + FP ); (i) where TP and FP express
the number of true positives and false positives.
Recall: illustrates the ratio TP/(TP+FN); (ii) where FN means the number of
false negatives. Furthermore, TP/TN are outcomes where the model correctly
predicts positive/negative class. Similarly, FP/FN are outcomes where posi-
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tive/negative class is incorrectly predicted by the model. A weighted harmonic
mean of precision and recall is F1-Score.
F1-Score: reaches its best score at 1 and the worst at 0. The obtained formula
expressed as follows by Equation 1:

F1 − Score = 2 ∗ (Precision ∗Recall)/(Precision + Recall). (1)

Since test datasets varies in size, micro-average is used to computes different
metrics in order to assess the overall precision, recall and F1 − score (Table
4). The macro-average method can be used when you want to know how the
system works globally across all datasets. It computes metric independently for
each class, then takes the average (so all classes are treated equally), while a
micro-average aggregates the contributions of all classes to calculate the average
metric. Classifiers that reach the best overall performance are chosen by vote.

Table 4 shows that Artificial Neural Network (ANN), Decision Tree (DT ),
Random Forest and SVM reach the highest overall precision rate close to 99.9%.
The k-Nearest Neighbors (k-NN) algorithm then comes with an overall accuracy
of 98.4%. This means that these algorithms are able to uniquely identify a cate-
gory of IoT device with very high probability. These results once again demon-
strate the skill of proposed features to accurately identify devices categories.
ANN improvement requires to encode categorical variables label to numerical
ones. In addition, we have enough data collected to reach a high precision, which
was a limit with work in [5].

Similarly, for each category, we estimate the precision, recall and F1-score
individually to show the ability of classifiers to identify each of them (binary
decision). Table 5 illustrates obtained results. For each class taken individually,
it can be seen that ANN , DT , RF and SVM algorithms are able to positively
verify a class of devices with a high precision (between 89.9% and 100% for
ANN , DT , RF ; and between 70.8% and 100% when k-NN is included. GNB
is amongst algorithms that be downgraded because of his worst performance
(overall near 76.3%).

Afterwards, we classify the rest of testbed devices by group. The three best
algorithms which offer the high precision are chosen by vote. We then submit
samples of each of these 26 devices to our prediction models obtained above
from MLPC.predict(), SVC.predict() and RFC.predict() classes. These classes

Table 4. Overall performance on the test set of the different classifiers.

Algorithms accuracy micro-avg
precision

micro-avg
recall

micro-avg
F1 score

ANN 0.999 0.999 0.999 0.999

k-NN 0.984 0.984 0.984 0.984

DT 0.999 0.999 0.999 0.999

GNB 0.649 0.649 0.649 0.649

RF 0.999 0.999 0.999 0.999

SVM 0.999 0.999 0.999 0.999
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Table 5. Precision, Recall and F1-score on the test set for different classifiers.

Algorithms Precision Recall F1-score

CSSC CWMS CAEC CSSC CWMS CAEC CSSC CWMS CAEC

ANN 1. 1. 1. 1. 1. .998 1. 1. 1.

k-NN .797 .974 .984 .708 .998 .957 .935 .989 .968

DT 1. 1. 1. .996 1. 1. .999 .997 1.

GNB .785 .958 .715 1. .605 .767 .553 .749 .737

RF 1. 1. 1. .898 1. 1. .999 1. 1.

SVM .809 1. 1. .807 1. 1. .809 1. 1.

are those used in the prediction phase for respectively ANN , SVM and RF
algorithms. Table 6 shows classification results. It is worth noticing that:

1. Any device classified as belonging to a single class X by the three algorithms
with an accuracy greater than 75% is retained as belonging to X.

2. Device belongs to a class X if predicted by at least two out of three algo-
rithms as being similar to X with overall accuracy greater than or equal to
80%.

3. Any device classified as belonging to the three classes by the three algorithms
with any accuracy rate is downgraded.

4. Any classification giving an overall accuracy between 85% and 100% obtained
by two out of three algorithms, for device classified twice, the classification
of the two algorithms prevails over the remaining one.

5. Any other classification obtained is rejected and the equipment is considered
unrecognized.

Case (3) is observed for two devices; NEST Protect smoke alarm and Hello Bar-
bie in Table 6. These devices are downgraded and considered as unrecognized.
This is due to a lack of collected data. Indeed, over a 24-hour observation pe-
riod, few data is captured for these devices in the smart environment. Device
such as “Netatmo Welcome”, “Triby Speaker” and “TP-Link Day Night Cloud
camera” belong to case (2). Netatmo Welcome is accurately classifier as CAEC

with 99.98% by SVM and 86.93% by RF .
Regarding to Triby Speaker, it is mapped as CWMS with accuracies of 88%

by SVM, 95.41% by ANN and 47.8% as CAEC by RF . TP-Link Day Night
Cloud camera is identified with accuracy near 90.88% as CAEC by RF , 99.95%
by SVM and as CWMS with 88.18% of precision. “August Doorbell Cam” and
“Ring Door Bell” are also downgraded, because no traffic instance of this devices
is observed in dataset. This probably due to their absence (out of service) during
the capture phase. Overall, only around 3% devices is not classified for reasons
mentioned above. Any other device in Table 6 belongs to case (1).
Performance Evaluation. In order to assess overall performance of our model,
we focus on the total number of packets (Tot Fwd/Bwd Pkts columns) con-
tained in the first flows generated by each device. We attempt to find optimal
number of packets needed to accurately recognize a device. Let p the number
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Table 6. Group-based Iot devices classification.

Devices CCSS CWMS CAEC

Dropcam ⊗ X ⊗
Netatmo weather station X ⊗ ⊗

LiFX Smart Bulb ⊗ X ⊗
Triby Speaker ⊗ X ⊗

TP-Link Day Night camera ⊗ ⊗ X
Withings Aura smart sleep sensor ⊗ X ⊗

iHome ⊗ X ⊗
Withings Smart Baby Monitor ⊗ ⊗ X

NEST Protect smoke alarm � � �
PIX-STAR Photo-frame X ⊗ ⊗

Insteon Camera (Wifi & Lan) ⊗ ⊗ X
Belkin wemo motion sensor ⊗ X ⊗

Smart Things ⊗ ⊗ X
Belkin Wemo switch ⊗ X ⊗
TP-Link Smart plug ⊗ X ⊗

HP Printer ⊗ X ⊗
Nest Dropcam ⊗ X ⊗
Amazon Echo ⊗ ⊗ X

Netatmo Welcome ⊗ ⊗ X
Samsung SmartCam X ⊗ ⊗

Blipcare Blood Pressure meter ⊗ X ⊗
August Doorbell Cam − − −

Awair air quality monitor X ⊗ ⊗
Canary Camera X ⊗ ⊗

Google Chromecast ⊗ ⊗ X
Hello Barbie � � �

Phillip Hue Lightbulb ⊗ X ⊗
Ring Door Bell − − −

of packets sent and received by each device in chronological order, we rearrange
the testbed by varying the value of p from 2 to 10. The Random Forest classifier
is used in this empirical qualifier experiment. Indeed, RF is one of the trio of al-
gorithms that reaches best accuracy values and is suited for models performance
comparison with work in [5].

A small value of p (e.g. p = 1) seems insufficient to ensure a certain verdict.
Fig .4 illustrates the obtained results. We observe that the overall accuracy rate
increases according to the number of packets. For 2 ≤ p ≤ 10, the accuracy rate
goes from 98.81% to 99.98%. It increases by 1.4% between 2 and 3 and by only
0.3% between 3 and 10, 10 maximizes the value of p since no variation is noted
next. The accuracy reaches its best rate for p = 4 and does not vary regardless
to p. We already obtained a suitable precision of 98.81% with only 2 packets
received (p = 2). However we do not adapt this value since NEST Protect smoke
alarm and “Hello Barbie” are downgraded (Table 6). In fact, flow observed
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for each of these devices consists of only 2 packets and we see above that the
identification of these devices by the three classifiers was uncertain.

Based on obtained results, we reach overall accuracy value near 99.98% with
RF for an optimal value of 4 packets. The limited number of devices represen-
tative classes explains this high rate because although the number of devices is
relatively large, they are finally grouped into only few classes (3). Furthermore,
our model offers better performance and less overhead compared to previous
work [5]; GBC−IoT reaches 99.98% with p = 4 while 6 packets are necessary in
Shahid et al. model to achieve relatively the same accuracy, Fig. 4.

Fig. 4. Overall performance comparison according to number of packet sent and re-
ceived.

5 Discussion

An unitary classification technique using four features is proposed by Shahid
et al. [5] to distinguish traffic from four IoT devices. GBC−IoT approach is
better since it uses fewer features and addresses more IoT devices (28 vs. 4). In
addition, it gives less computational overhead with an optimal number of packets
for device recognition. There is lack of traditional devices (Smartphone, Tablet,
PC, etc.) in traffic traces studied in [5], which is not the case in a real IoT
environment. Thus, a question is: what would be the performance of their model
in a real environment which exhibits the behavior of traditional equipment on
studied datasets?

Furthermore, in front of huge amount of available IoT devices, it becomes
difficult to deal with a single classifier for each device as performed in [5]. The
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same is true for works in [8] [9] [22]. Thus, we propose an optimal and less
computational model that train classifiers for groups of devices sharing simi-
lar behaviors. The authors in [18] evaluated the effective number of packets in
early stage Internet traffic identification. They show this value between 5 and 7.
GBC−IoT require just 4 packets to accurately identify IoT device class studied
here. A common limitation of works related to IoT (including ours) is the limited
number of devices studied due to the lack of publicly available data. However, to
deal with a single classifier for every device does not seem to be a good approach.
GBC−IoT is more suitable for managing a smart territories scale environment
which hosts a large number of devices, since it proposes to classify any device
among three instead of 28 or probably more.

GBC−IoT is limited by active classification, it cannot classify additional
device that be added to network until it has enough traffic data. It would be
interesting to adapt it to a real-time classification model, thereby, it might be
adequate for fine group-based traffic QoS management. As solution, we propose
an IoT environment based on Software-Defined Network (SDN).

According to this context, the controller with a global view of the network
will detect any new added device app−profile and its GBC−IoT -based class.
Thus, data forwarding decision rules will arise from both device application QCI
requirements vector and GBC−IoT classification result. Thereby, GBC−IoT
should be implemented as a module in the SDN controller. A better alternative
approach is to implement it in a hybrid SDN -based IoT network architecture,
which is easier to deploy in current networks. However, studies based on our
approach must be carried out, trying above all to choose features that are more
independent of network structure. A set of features such that there is none that
depends on the physical structure of the network would give more scalability to
our model.

As summary, the proposed model does not use any of the features mentioned
in section 2; TCP session length [5], traffic volume [10], domain of DNS queries
[11], MAC addresses or NIC. In addition, GBC−IoT uses less features for
a better precision then literature [5], [15]. According to performance concern,
GBC−IoT framework gives less computational overhead with a minimum of 4
packets for traffic identification as illustrated by obtained results in Fig. 4. This
number is between 5 and 7 in [18] and equals to 6 in [5].

To the best of our knowledge, this is the first work that uses ML approach
to deal with classification problem relating to both the increasing number and
diversity of connected IoT devices and that avoids the use of features that more
likely to affect traffic behavior. Indeed, it becomes difficult and resources inten-
sive to deal with a single classifier for every device among thousands of different
types of available devices in the market. Thus, a classifier that deals with groups
of devices that share similar behaviors is more suitable for this wide variety of
equipment in IoT worlds.
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6 Conclusion

Nowadays, recognition as well devices integration become a challenging research
field with respect to IoT networks. Therefore, we proposed a group-based IoT
devices classification using network traffic characteristics. Visualization using t-
SNE highlighted the effectiveness of selected features. According different used
ML algorithms, we achieve an overall accuracy of 99.98%. Furthermore, our
model classifies 26 amongst the 28 devices provided by traces collected in [9].

Based on our experimental results, we can conclude that Group-Based IoT
devices Classification related to passive network traffic analysis can offer great
accuracy in devices behavior recognition and is more suitable for smart territories
environment that host thousands of different types of devices.

We believe that a group-based classification (active/passive) of IoT device
according to their traffic characteristic is the more suitable approach. However,
continuously update the proposed model is necessary due to regularly network
behavior changes over time for different reasons. The integration of SDN con-
cepts would be an asset and a good prospect for improving our model, since an
instant and adequate model can be implemented according to network real-time
state.
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Devices Recognition through Network Traffic Analysis. In Proc. IEEE ICBD, pp.
5187-5192, USA, 2018.

6. Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O. Tippen-
hauer, and Y. Elovici.: ProfilIoT: A machine learning approach for IoT device iden-
tification based on network traffic analysis. In Proc. SAC, Pages 506–509, Morocco,
2017.

7. Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer, J. D.
Guarnizo, and Y. Elovici.: Detection of unauthorized IoT devices using machine
learning techniques, arXiv:1709.04647, 2017.

8. A. Sivanathan et al.: Characterizing and classifying IoT traffic in smart cities and
campuses. In Proc. IEEE INFOCOM WKSHPS, pp. 559-564, Atlanta, GA, 2017.

9. A. Sivanathan, H. Habibi Gharakheili, F. Loi, A. Radford, C. Wijenayake, A. Vish-
wanath, and V. Sivaraman.: Classifying IoT Devices in Smart Environments Using
Network Traffic Characteristics. In Proc. IEEE Transactions on Mobile Computing,
vol. 18, no. 8, pp. 1745-1759, 1 Aug., 2019.



18 A. Bassene and B. Gueye

10. M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang and J. Wang.: Large-Scale Measurement
and Characterization of Cellular Machine-to-Machine Traffic. In Proc. IEEE/ACM
Transactions on Networking, vol. 21, no. 6, pp. 1960-1973, Dec., 2013.

11. N. Apthorpe, D. Reisman, N. Feamster.: A Smart Home is No Castle: Privacy
Vulnerabilities of Encrypted IoT Traffic. In arXiv:1705.06805, 2017.

12. M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. Sadeghi, S. Tarkoma.: Iot
sentinel: Automated device-type identification for security enforcement in iot. In
Proc. ICDCS,pp. 2177-2184, Atlanta, GA, 2017.

13. Anderson Blake, McGrew David.: Identifying Encrypted Malware Traffic with Con-
textual Flow Data. In Proc. AISec, pp. 35-46, 2016.

14. A. Sivanathan, D. Sherratt, H. H. Gharakheili, V. Sivaraman and A. Vishwanath.:
Low-cost flow-based security solutions for smart-home IoT devices. In Proc. IEEE
(ANTS), pp. 1-6, Bangalore, 2016.

15. Hamza Ayyoob, Ranathunga Dinesha, Habibi Gharakheili Hassan, Benson
Theophilus, Roughan Matthew, Sivaraman V.: Verifying and Monitoring IoTs Net-
work Behavior using MUD Profiles. In proc. IEEE Transactions on Dependable and
Secure Computing, 2020.

16. Yuchun Tang, Yan-Qing Zhang, Zhen Huang.: FCM-SVM-RFE Gene Feature Se-
lection Algorithm for Leukemia Classification from Microarray Gene Expression
Data. In Proc. FUZZ, pp. 97-101, Reno, NV, 2005.

17. M. Weiss et al.: Time-Aware Applications, Computers, and Communication Sys-
tems. Technical Note (NIST TN) - 1867, Fev., 2015.

18. L. Peng, B. Yang, Y. Chen.: Effective Packet Number for Early Stage Internet
Traffic Identification. In Neurocomputing Journal, vol. 156(25), pp. 252-267, 2015.

19. Li Ying, Noseworthy Bob, Laird Jeff, Winters Timothy, Carlin Timothy.: A study
of precision of hardware time stamping packet traces. In Proc. IEEE ISPCS, pp.
102-107, Austin, TX, 2014.

20. Prasad A., Iverson L., Liaw A.: Newer classification and regression tree techniques:
Bagging and random forests for ecological prediction. In Ecosystems Journal, vol.
9, pp. 181–199, 2006.

21. Thanh Noi P, Kappas M.: Comparison of Random Forest, k-Nearest Neighbor, and
Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2
Imagery. In Sensors journal, vol. 18(1), pp. 18, 2017.

22. W. Linlin, L. Peng, M. Su, B. Yang, and X. Zhou.: On the impact of packet inter
arrival time for early stage traffic identification. In Proc. IEEE iThings and IEEE
GreenCom and IEEE CPSCom and IEEE SmartData, pp. 510-515, Chengdu, China,
2016.

23. Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir.: Application-
awareness in SDN. In Proc. ACM SIGCOMM, pp. 487–488, NY, USA, 2013.

24. A. Este, F. Gringoli, and L. Salgar elli.: On the Stability of the Information Carried
by Traffic Flow Features at the Packet Level. In Computer Communication Review
journal, vol 39, pp. 13-18, 2009.


