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Abstract. In this study, we present an approach for called FuMalMMo
for Fusion of Machine learning and Mathematical Models. It is an ap-
proach based on data fusion which leverages information coming from
different datasources to make a decision. The approach we present fol-
lows a “Y” pattern where in the left branch, there is a machine learning
model in charge of forecasting the water quality of a water point. In the
right branch, there is an epidemiological model responsible for making
a forecast of the evolution of the density of parasites and snails causing
schistosomiasis. In the middle branch, we rely on the theory of belief
functions or evidence theory to combine the forecasts made by the two
models in order to infer one day ahead the state of infestation of a water
point with a precision of 0.75.

Keywords: Data fusion · Water quality prediction · Mathematical epi-
demiology of infectious diseases · Schistosomiasis

1 Introduction

Schistosomiasis is an acute and chronic parasitic disease caused by trematodes
of the genus Schistosoma. The larvae of the parasite, released by intermediate
hosts (snails), enter a person’s skin when in contact with infested water. The
life cycle of the disease transmission involves humans (final host), parasites and
intermediate host (snails). The intermediate hosts (snails) live in water points
(lakes, dams, rivers, etc.). The water quality of these water points influences their
biological cycle as well as that of the parasites [1–3], and consequently plays on
the extinction or the persistence of the disease.

We address the spread of schistosomiasis from a health prevention viewpoint.
Indeed, we aim to set up an alert system to prevent when a water point is infested.
A water point is infested when it contains infected snails that emit parasites. To
achieve this, it is necessary to evaluate earlier the quality of water points and
the density evolution of snails and parasites. For the earlier assessment of water
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quality, we consider a water quality model which can forecast one day ahead the
quality of a water point [4]. And for the assessment of the snails and parasites
density evolution, we refer to an epidemiological model. To leverage the two
sources of information, we formulate an approach which consists of fusion of the
results of two mentioned models.

In [5] data fusion is defined as a combination of information originating from
several sources in order to improve decision-making. Several methods of data
fusion are encountered in the literature. They come essentially from probabil-
ity theory, evidence theory and fuzzy set theory [6], [7],[8]. The methods are
proposed to take into account the characteristics of the information to be com-
bined. The authors in [9] indicate that these different methods are not to be put
in competition and are not contradictory. They argue that the choice of one of
these methods must be made by finding the best match between the intended
application and the specifics of the method.

The information to be fused in our case study present a form of imperfec-
tion which is uncertainty. This uncertainty is due to the fact that none of the
forecasting models used as a data source is intended to faithfully reflect reality.
This results in forecasts with margins of error. Uncertainty is represented and
quantified by probability theory [6, 8]. But its use requires a priori probabili-
ties [8]. These a priori probabilities are difficult to determine in our case study.
Evidence theory is a data fusion method that does not require knowledge of a
priori probabilities [10]. It extends both set theory and probability theory in the
representation of uncertainty [11]. This leads us to employ evidence theory in
our study.

The rest of the paper is organized as follows: section 2 presents some basic
concepts of evidence theory. In Section 3, we describe the proposed data fusion
corresponding to our case study. The section 4 explains how evidence is applied
to combine data coming from the data-sources. We present the experimental
setup and results respectively in section 5 and 6. Section 7 gives a conclusion
and some perspectives to be addressed in future work.

2 Background on evidence theory

The theory of belief functions, also known as the Dempster-Shafer theory or
the theory of evidence, was proposed by Dempster and then mathematically
formulated by Shafer [8, 9]. It is based on modeling the belief in an event. There
are four steps to follow in the application of this theory. The first step is modeling
which consists of choosing a mathematical representation for information to be
combined. The second step consists of quantifying the information. The third
and fourth steps are combination and decision which consist of applying rules to
synthesize information and take decision.

2.1 Information modeling

Information to be fused is modeled by mass function or basic belief assignment.
By setting D = {d1, d2, ..., dn}, the frame of discernment where each di designates
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a hypothesis in favor of which a decision can be made, the mass function can be
defined on 2D with values in [0, 1] [6, 12]. For a source Sj , the mass function mj

verifies: ∑
A∈2D

mj(A) = 1 (1)

From a mass function, it is possible to derive other functions [9, 13] such as:
(i) the credibility denoted “bel” which represents the total mass of belief in A
and the plausibility “Pl” which is interpreted as the maximum belief in A. We
just present the equation of ‘Pl” that we need in decision step. “Pl” is defined
as follows :

plj(A) =
∑
A∩B

mj(B) ∀A ⊆ D (2)

Mass function can be discounted to take in account the reliability of sources
[13]. It is done by introducing a discounting coefficient αj ∈ [0, 1] [13]. The mass
function for all A ∈ 2D, A ̸= D is thus redefined as:{

m
′

j(A) = (1− αj)mj(A), A ⊂ D

m
′

j(D) = (1− αj)mj(D) + αj

(3)

2.2 Estimation

Except when an expert expresses his opinion in the form of a mass function
directly, in all other cases, there is no generic method to solve this problem
[9]. We expose here a mass function deduced from a probability of realization
s ∈ [0, 1] of the hypothesis or set of hypotheses A. Thus, we have:

mj(A) = s, A ⊂ D

mj(A) = 1− s

mj(B) = 0, B ̸= A ⊂ D

(4)

where s ∈ [0, 1], a real is considered as the probability of occurrence of the
event A.

2.3 Combination

We present here the Demptser-shafer’s rule which is the rule that we have used.
It operates a conjunctive combination followed by a normalization. The normal-
ization consists in distributing the mass of the conflict to all the other elements
of 2D except ∅. We describe this rule by considering only two masse functions,
m1 and m2.

We propose to distinguish the combined mass function by the notation mcomb.
The combination performed by the Demptser-shafer’s rule is defined as follows:

mcomb(A) = (m1 ⊕m2)(A) =
1

1− k

∑
B1∩B2=A

m1(B1)m2(B2) (5)
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with mcomb(∅) = 0 and k is the normalization term is:

k =
∑

B1∩B2=∅

m1(B1)m2(B2) (6)

2.4 Decision

The choice of the final decision or hypothesis can be made according to several
criteria [6, 13]. The criterion used to determine the final decision in our context
is maximum plausibility. Let Dec denote this decision and plcomb the plausibility
deduced from the combined mass mcomb. Dec can be defined as follows:

Dec = argmax plcomb(A) (7)

3 Proposed data fusion architecture

The proposed architecture comes in three branches in the form of a “Y” as il-
lustrated on figure 1. The left branch is responsible for providing information

Fig. 1: Data Fusion Architecture

relating to the water quality of a water point. It is based on the water quality
forecasting model that we have developed in a previous work [4]. We denote this
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model WQP for Water Quality Prediction. The model predicts one day ahead
the future values of pH, temperature, dissolved oxygen (DO) and electrical con-
ductivity (EC). Then these predicted values are after compared with thresholds
taken from the literature to characterize the water quality as lethal, favorable
and optimal. Each category of water quality corresponds to a specific proportion
of infected snails. We show in section 4.1 how it is determined.

The right branch is responsible for providing information relating to the evo-
lution of the density of snails and parasites. It is based on an epidemiological
model that we have identified in a previous work [14]. We denote this model
SIS for Susceptible Infected Susceptible. It is a mathematical model with com-
partments which takes as input the numbers of human populations, parasites
(mirracidia and cercariae) and intermediate hosts (snails) and provides the ba-
sic reproduction number R0. R0 governs the dynamics of the system. If its value
is greater than 1, there is a proliferation of infected snails and the disease per-
sists. If it is less than 1, there is an extinction of the disease. Each condition met
by the reproductive number value corresponds to a specific proportion of snails
also infected. We show in section 4.1 how it is determined.

The proportions of snails determined according to the output of each model
will constitute the data to be combined. The middle branch is responsible for
this combination truly speaking itself. This involves performing the four stages
of the evidence theory in order to infer the infestation state of a water point. We
denote it FUMalMMO for Fusion of Machine learning Model and Mathematical
Model.

4 Implementation of evidence theory

4.1 Mass modeling and estimation

The water point will be declared infested or not. This leads us to define a frame
of discernment which is made up of two candidate hypotheses : D = {d1, d2}. d1
is the hypothesis that an observed water point is infested. d2 is the assumption
that it is not. The power set is then 2D = {∅, d1, d2, d1,2}. d1,2 = {d1, d2} and
allows translating a part of ignorance on the state of the water point.

Mass function modeling For each possible output of WQP , the defined mass
function is mwqp:

{mwqp(d1),mwqp(d2),mwqp(d1,2)} (8)

With mwqp(d1) being a numeric value indicating how much WQP believes the
water is infested. mwqp(d1) indicates how much WQP believes that the water
point is not infested. mwqp(d1,2) allows WQP expressing ignorance as to the
probable state of the water point.

And for each output of SIS, the defined mass function is msis:

{msis(d1),msis(d2),msis(d1,2)} (9)
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{msis(d1),msis(d2),msis(d1,2)} have the same meaning as {mwqp(d1),
mwqp(d2),mwqp(d1,2)} but from the point of view of SIS.

mwqp(∅) = 0 and msis(∅) = 0 because the discernment framework contains
all possible candidate hypotheses. Once the choice of representation has been
made, the next step is estimation.

Estimation of mass functions We consider the equation 4 described in sec-
tion 2.2 to estimate the mass functions. The probability of realization of the
hypotheses will correspond to a proportion of infected snails. This proportion
depends on the different outputs of WQP and SIS models as described in the
architecture in the section 3.

For each output of the WQP model, the mass function is estimated as follows:{
mwqp(d1) = t, d1 ⊂ D
mwqp(d2) = 1− t

(10)

For each output of the SIS model, the mass function is estimated as follows:{
msis(d1) = t, d1 ⊂ D
msis(d2) = 1− t

(11)

where t denotes the proportion of infected snails. In the following lines, we
indicate how it is determined from each model.

Determination of the proportion of infected snails from WQP It is carried out
on the basis of spatio-temporal malacological study. That is to say a study
comprising a collection of snails carried out at a given period in different places
and followed by an identification of the species then a test for the emission of
cercariae. To all this is added an analysis of the physicochemical parameters to
establish a correlation with the proportion of infected snails.

The infected snails proportion is determined by the following formula :

tq =

∑n
i=1 P

q
i

n
(12)

where tq indicates the arithmetic mean of infected snails proportion correspond-
ing to water quality q. q being a flag which designates one of the possible output
of WQP : lethal, favorable and optimal. P q

i indicates the infected snails propor-
tion found on a specific place i and corresponding to water quality q.

We selected a study which took place in Tanzania (at Lake Victoria) and
which focused on snails belonging to the genus Biomphalaria which is the genus
responsible for intestinal schistosomiasis [15]. The study took place from Febru-
ary 2016 to March 2016. Sixteen places were explored. For each category of
water quality, we calculate the arithmetic mean of the proportions. Thus, we
obtain toptimal = 63.68% for the optimal category and tfavorable = 32.43% for
the favorable category and tlethal = 0%.

Once the proportion has been determined for each category, the resulting
mass functions are deduced by the equation 4. We present the results in table 1.
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Table 1: Estimated mass functions for each output of WQP

Water quality category mwqp(d1) mwqp(d1) mwqp(d1,2)
Lethal 0 1 0

Favorable 0.32 0.68 0
Optimal 0.64 0.36 0

The values in the table 1 are interpreted as follows : when water is lethal, a
mass function of 1 is assigned to hypothesis d2. This is interpreted as follows:
when the water is lethal, there can be no infestation. When the water is favorable,
a mass function of 0.3243 is assigned to the hypothesis d1 and a mass function of
0.6757 is assigned to the hypothesis d2. This is interpreted as follows: when the
water is favorable, the chances that the point is infested are very low, but it is not
excluded that it is. When water is optimal, a mass function of 0.64 is assigned
to the hypothesis d1 and a mass function of 0.36 is assigned to the hypothesis
d2. This is interpreted as follows: when the water is optimal, the chances that
the water point is infested are high but nothing excludes that it is not.

Determination of the proportion from SIS The proportion of infected snails is
determined based on the value of the basic reproduction number R0. When :

– R0 < 1, the disease will die out. This means that the system is in a state
where the infected compartments do not have enough individuals for the
disease to spread. This state is translated by the solution of the system which
is ϵ0 = (H0, 0, 0,M, 0, 0). Which means that the compartments of susceptible
humans and snails have individuals. But there are neither parasites, neither
infected individuals. From this we derive a proportion of infected snails t =
0%.

– R0 > 1, the disease will spread. This means that the system is in a state
where there are enough individuals in the infected compartments to allow
disease transmission. This state is translated by a solution of the system
which is ϵ∗ = (HS∗, HI∗,K∗,MS∗,MI∗, P ∗). This solution is not an ex-
plicit expression like ϵ0. To determine a proportion of infected snails, it is
necessary to:
• launch a numerical simulation of the system;
• and calculate a proportion when the variations of the different compart-

ments become insignificant. The calculation is done with the following
formula:

t = M∗
I /M

∗ (13)

with M∗ representing the total number of snails observed and M∗
I the

number of snails emitting cercariae. For the numerical resolution, we use
the simulation data of the model found in [16]. We thus obtain t = 85%.

Here also, once the proportion has been determined for each value of R0, the
resulting mass functions are deduced by the equation 4. We present the results
in table 2.
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Table 2: Estimated mass functions for each output of SIS

R0 threshold msis(d1) msis(d1) msis(d1,2)
R0 < 1 0 1 0
R0 > 1 0.85 0.15 0

The values in the table 1 are interpreted as follows : when R0 < 1 , a belief
mass of 1 is estimated for the hypothesis d2. What results in the fact that there
cannot be infestation when there is extinction of the disease. When R0 is greater
than 1, a mass of 0.85 is estimated for the hypothesis d1 and a mass of 0.15 for
the hypothesis d2. This translates into the fact that when the disease persists,
there is a very good chance that the water point will be infested. But nothing
excludes that this is not the case.

Discounting of mass functions Our sources are forecast models. This in-
dicates that there may be discrepancies between the predicted and expected
values. To take into account the errors of these models, we propose to determine
an discounting coefficient α by the following formula:

α = 1−R2 (14)

with R2 denoting the coefficient of determination. We therefore obtain for the
source WQP :

αwqp = 1−R2
wqp (15)

and for source SIS:
αsis = 1−R2

wqp (16)

Once the discounting coefficients are determined, the equation 3 is applied. The
masses of belief become thus:

m
′

wqp(d1) = (1− αwqp)mwqp(d1)

m
′

wqp(d2) = (1− αwqp)mwqp(d2)

m
′

wqp(d1,2) = (1− αwqp)mwqp(d1,2) + αwqp

(17)

And 
m

′

sis(d1) = (1− αsis)msis(d1)

m
′

sis(d2) = (1− αsis)msis(d2)

m
′

sis(d1,2) = (1− αsis)msis(d1,2) + αsis

(18)

We use the symbol “
′
” to designate the discounted masses.

4.2 Combination of mass functions

The Demptser-shafer combination rule described by the equation 5 is applied to
obtain the mass set overall after the merger. The normalization term k obtained
is equal to:

k = m
′
wqp(d1)m

′
sis(d2) + m

′
wqp(d2)m

′
sis(d1) (19)
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We thus obtain the combined masses of belief:

mcomb(d1) =
1

1 − k
[m

′
wqp(d1)m

′
sis(d1) + m

′
sis(d1)m

′
wqp(d1,2) + m

′
wqp(d1)m

′
sis(d1,2)]

mcomb(d2) =
1

1 − k
[m

′
wqp(d2)m

′
sis(d2) + m

′
sis(d2)m

′
wqp(d1,2) + mwqp(d2)msis(d1,2)]

mcomb(d1,2) =
1

1 − k
[m

′
wqp(d1,2)m

′
sis(d1,2)]

(20)

4.3 Decision of mass function

At this stage, there is a calculation of plausibilities which is carried out with the
equation 2. We obtain :

plcomb(d1) = mcomb(d1) +mcomb(d1,2)

plcomb(d2) = mcomb(d2) +mcomb(d1,2)

plcomb(d1,2) = mcomb(d1) +mcomb(d2) +mcomb(d1,2) = 1

(21)

Then we retain the hypothesis with the maximum plausibility as the decision
to be made.

Dec = max(plcomb(d1), plcomb(d2)) (22)

In the final result, we want the water point to be classified as “infested” or
“not infested”, i.e. there is no reject. Consequently, the final decision is “infested”
if the plausibility of the hypothesis d1 is greater than that which corresponds to
d2 whatever the plausibility of d1,2.

5 Evaluation

5.1 Experimental setup

In this section, we present the required data and the testing process.

Required data. Carrying out the experiment requires data which can be used
can be served as inputs for WQP model and SIS model.

A study providing this necessary data was conducted in [17]. It was carried
out from January 2016 to May 2017 in Panamasso and focused, among other
things, on a parasitological study and a malacological study associated with an
analysis of the physicochemical parameters of a water point.

The parasitological study took place precisely in January 2016 and revealed
that he human prevalence rate of intestinal schistosomiasis is 27.47% and the
total size of the population which is 3065 inhabitants. The malacological study
consisted of collecting snails of the genus Biomphalaria (responsible for intestinal
bilharziasis) and in taking physicochemical parameters such as PH, temperature
(TEMP), electrical conductivity (EC) and dissolved oxygen (DO). The different
collections took place in three seasons: winter (June 2016 - November 2016),
cold (December 2016 - February 2017) and hot (March 2017 - May 2017). Each
collection phase was spread over 10 days.
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For our test, we are interested in two seasons, the cold season and the hot
season. We summarize the data of these two seasons in the table 3. In addi-
tion to the physicochemical parameters, the density of snails collected and the
proportion of infected snails are indicated.

Table 3: Average of physicochemical parameters and malacological data

Biomphalaria
Season

(Collection month) Parameter Value Density
(/30 min)

Proportion of
infected snails

Cold
(December 2016)

PH 7

64.62 40.04%Temp(°C) 24
CE 125
OD (%) 75

Hot
(March-April 2017)

PH 6

187.66 59.18%Temp(°C) 27
CE 220
OD (%) 35

In addition to these data relating to the specific case of the Panamasso water
point, other data relating to “biological” and “contextual” parameters are needed.
For the first type, the values are taken from the literature [16]. For the contextual
parameters, we used the 2016 statistical yearbook of Burkina Faso [18]. These
are the human natural birth rate (46/1000) and the life expectancy (56.7 years)
to determine the recruitment rate and the human natural death rate respectively.

Testing process. We proceed by:

– defining some scenarios from the data presented in the table 3 and by sim-
ulating the application of certain control methods that break the cycle of
transmission of the disease. The different scenarios established are presented
in the table 4.
Table 4: Scenarios determined on the basis of physicochemical parameters and

malacological and parasitological data.

Scenario Description Expected situation
1 None of humans recovers Infested Water
2 Full recovery of illned humans (100%) Infested Water

3 Removal of mollusks
via molluscide Uninfested water

4 Environmental Pollution Uninfested Water

– an execution of WQP and SIS models as follows :
• the SIS model takes as input the December population densities and the

necessary parameters; it then provides a R0 valid for the period from
January 2017 to March 2017.

• the WQP model takes as input all the physicochemical parameters of
the past two days; we start with the last two days of December 2016.
Then the last day of December 2016 and the 1st day of January 2017,
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and so on until we cover the entire period January 2017 to March 2017.
For each observation of the two last days, it provides the next day’s water
quality.

– an execution of the FuMalMMO model which consists of applying the
evidence theory as described in the section 4 on the forecasts of water quality
and the evolution of the density of snails. We then randomly choose six dates
in the period from January 2017 to March 2017. And we perform the fusion
taking into account the value of R0 of the period and the water quality of
the water point forecasted for each of these dates.

6 Results

6.1 Infestation states observed for each scenario

The basic reproduction numbers obtained for the different scenarios are as fol-
lows: R0 = 39 for scenario 1 and scenario 4. R0 = 0 for scenario 2 and scenario
3. We present the results obtained for the different scenarios in table 2a, 2b, 2c
and 2d.
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Fig. 2: Plausibilities obtained after combination

For the scenario 1, all the chosen dates indicate a situation of an infested
water point. This result is consistent with the expected situation as mentioned
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in the table 4. For the scenario 2, the chosen dates indicate a situation of an
uninfested water point. These results are contrary to the expected situation men-
tioned in the table 4. For the scenario 3, all the chosen dates indicate a situation
of an uninfested water point. But at this time, the results are consistent with
the expected situation. For the scenario 4, we obtain a situation of uninfested
water point for the chosen dates. These results are consistent with the expected
situation mentioned in the table 4.

These results are obtained from the quality of the water point forecasted on
the chosen dates and the value of R0 of the period from January 2017 to March
2017. In the table 5, 7, 6 and 8, it is presented the different operations performed
to infer the infestation state of water on a chosen date. The date 2017-03-10 is
taken as an example. The same operations are done for the other chosen dates.
The column headers of the tables indicate the different candidate hypotheses.
The row headers represent respectively the mass functions assigned by WQP
and SIS as well as the combination and decision operations. The contents of
the tables are different according to the mass functions assigned following the
prediction results of the two models. In this scenario 1, the water quality forecast
is favorable and the basic reproduction number R0 is equal to 39. In this scenario
2, the water quality forecast is favorable and the basic reproduction number R0

is equal to 0. In this scenario 3, the water quality forecast is favorable and the
basic reproduction number R0 is equal to 0. And in the scenario 4, the water
quality forecast is lethal and the basic reproduction number R0 is equal to 39.

Table 5: mass functions obtained
on date of 2017-03-10 for scenario 1

d1 d2 d1,2
mwqp 0.32 0.67 0.01
msis 0.85 0.15 0
mcomb 0.74 0.26 0
plcomb 0.74 0.26 1

Table 6: mass functions obtained
on 2017-03-10 for scenario 3

d1 d2 d1,2
mwqp 0.32 0.67 0.01
msis 0 1 0
mcomb 0 1 0
plcomb 0 1 1

Table 7: mass functions obtained
on 2017-03-10 for scenario 2

d1 d2 d1,2
mwqp 0.32 0.67 0.01
msis 0 1 0
mcomb 0 1 0
plcomb 0 1 1

Table 8: mass functions obtained
on 2017-03-10 for scenario 4

d1 d2 d1,2
mwqp 0 0.99 0.01
msis 0.85 0.15 0
mcomb 0.05 0.95 0
plcomb 0.05 0.95 1

6.2 Overall performance of the FuMalMMO model

The FuMalMMO model relies on two forecasting models to infer the infestation
status of a water point. It thus behaves like a binary classification model. We
evaluate here its performance in relation to the different scenarios defined in
order to assess its ability to infer in advance the state of infestation of a water
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point. To do this, we use different measures that are used to quantitatively assess
the results obtained.

The water point studied is either in an infested state or not. We call the
infested state positive and the uninfested state negative. A correctly classified
state is considered true positive or true negative. On the contrary, a misclassified
condition is either a false positive or a false negative.

True positives and false positives resulting from our method are compared
against expected situations. To assess performance, we adopt the following met-
rics: accuracy, precision and recall. We do not go further on how these metrics
are calculated. One can refer [19] for more information.

The figure 3 tells us about the overall performance bale according to these
three metrics. We also calculated these metrics for each of the models involved in
the fusion taken separately. To do this, it was considered that each model taken
individually should decide on its own, the state of the water point based on the
hypothesis having received the greatest plausibility among those it has issued.

Values of metrics

M
ét

riq
ue

s

Accuracy

Precision

Recall

0.00 0.25 0.50 0.75 1.00

WQP SIS FuMalMMO

Fig. 3: Comparison of FuMalMMo against WQP and SIS

The x-axis of the graph in figure 3 represents the values of the metrics. On
the y-axis, we have the different metrics used for the evaluation of the models.

With the data fusion approach of the two WQP and SIS models, we end
up with a FuMalMMO model which is able to classify in advance with great
confidence the cases of infestation (Precision = 1). On the other hand, when
it comes to classifying all the positive cases in advance, its performance is av-
erage (recall=0.5). But we note that it is able to classify in advance all types
of cases with good accuracy (0.75). By comparing the values of the metrics of
FuMalMMO with those obtained from WQP and SIS, we can note that each
model taken separately has modest performances compared to those of the fusion
model which combines the two.

7 Conclusion

Data fusion makes it possible to leverage several pieces of information in order
to make a better decision. In this paper, we have shown how to use data fusion
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to assess earlier if a water point harbors infected snails. The fusion method used
is the evidence theory or belief functions theory.

Using this theory, we achieved the fusion of information from two comple-
mentary models. One is a machine learning model forecasting water quality and
the other is an epidemiological model forecasting the density evolution of snails
and parasites.

With a recall of 0.5, an accuracy of 0.75 and a precision of 1, the fusion
approach leads to an efficient model to warn in one day ahead that a water
point is likely to be infested with parasites causing schistosomiasis.

In this work, the mass functions assigned by the water quality prediction
model are fixed. We think it would be interesting to consider determining them
dynamically. That is to say, instead of categorizing the water quality into lethal,
favorable and optimal and then determining the belief masses afterward, we will
try to determine these mass functions via a regression model.
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