
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Self-adaptive QoS-management
Framework
for Highly Dynamic IoT Networks
AVEWE. BASSENE1 and BAMBA GUEYE2.
1Université Cheikh Anta Diop de Dakar, Senegal (e-mail: avewe.bassene@ucad.edu.sn)
2Université Cheikh Anta Diop de Dakar, Senegal (e-mail: bamba.gueye@ucad.edu.sn)

Corresponding author: A. Bassene (e-mail: avewe.bassene@ucad.edu.sn).

ABSTRACT IoT infrastructure makes great demands on network control methods for dynamic and
efficient management of massive amounts of nodes. Software-Defined Networking (SDN) enables to
handle dynamically network traffic as well as flexible traffic control in real-time. However, while providing
flexibility and scalability, SDN-based architecture still remains ineffective to self-adapt with respect to
network topologies with more or less switches in the data plane (highly dynamic topology). Having a
centralized control plane is not an acceptable situation because that would represent a single point of failure
in the network. Using multiple controllers that ensure flexibility and high availability would be a solution;
meaning that if one controller has problems and fails, the other would be ready to take over and control
the network. Thus, having a single controller raises the problem of scalability while multiple controllers
call for a distributed states management problem. To overcome such issues, we propose EFQM++, a self-
adaptive framework for highly dynamic network topology changes. By leveraging SDN controller topology
discovery mechanism, EFQM++ improves flow end-to-end transmission delay. It tackles flexibility and
scalability related to a single point of failure problem and gives distributed states management solutions in
large scale IoT networks. EFQM++ reduces up to 6% and 13% the average delay in contrast to previous
works like EFQM and AQRA, respectively.

INDEX TERMS Software-Defined Networking, Internet of Things, Performance, Quality of Service,
Clustering.

I. INTRODUCTION

THE Internet of Things (IoT) is rapidly gaining ground
in the scenario of modern wireless telecommunications.

The basic idea of this concept is the pervasive presence
around us of a variety of things or objects such as Radio-
Frequency IDentification (RFID) tags, sensors, actuators,
mobile phones, etc. These devices can be attached and/or
revoked from the network every second which makes the
IoT network highly dynamic, evolutionary, and frequently
changing over time.

978-1-6654-2152-2/22/$31.00 ©2022 IEEE

Software-defined networking (SDN) is a constantly pro-
gressive technology that offers more flexible programmabil-
ity support [1]. The Open Networking Foundation defines
SDN as an adaptable and manageable emerging model that
deals with the dynamic aspect of today’s network applica-
tions. However, there are some scalability issues in large IoT
network and SDN-based IoT architecture still lacks to adapt
to such a wide and dynamic network (network that include
several devices) topology changes [2]. Topology discovery
mechanism (TDM) is a critical component of any SDN
architecture and often the most used criterion to improve net-
work performance in IoT environments. An efficient TDM
with the SDN concept of network and programmability
could be key elements for the implementation of a suitable
adaptive quality of service (QoS) support. The deployment
of distributed SDN controllers raises challenges regarding to
TDM and distributed states management problems in large
scale IoT network [3]–[7].

VOLUME 4, 2016 1

A. Bassene et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

We think that, the reduction of the TDM delay and
the management of control plan devices depending on on-
demand application requirements can be a smart strategy to
deal with such a changing network topology. We propose
EFQM++, a flexible framework that autonomously makes
adaptive QoS management decisions reliant on monitoring
network topology status, clustered controllers load and the
IoT application traffic requirements. EFQM++ consists of
a group of two entities; it is able to collect both network
topology and controller status information in one entity
and then join it to the second entity which interacts with
server application to fulfill current traffic QoS requirements.
Finally, the framework decides the best network topology
change to apply accordingly.

The first entity must imperatively be linked with an ef-
ficient TDM for good experimental results. To ensure a
suitable control entity for our framework, the performances
of the two SDN controllers, RY U [8] and ONOS [9],
were measured using the Mininet SDN simulation envi-
ronment. The second entity is based on QoS-aware algo-
rithm used in EFQM [10] and interacts with application
Layer. This algorithm is an heuristic algorithm based on
“Simulated Annealing” (SA) used to find the approximate
optimal path according to multiple constraints (delay, band-
width, best-effort).

The rest of the paper is organized as follows. Section II re-
views related works. Section III presents the TDM in SDN
in general and introduces our self-adaptive QoS management
framework architecture. Section IV tests controllers perfor-
mances in different dynamic testbeds scenarios. Section V
evaluates EFQM++ performance. Finally, a conclusion and
some open research perspectives are given in section VI.

II. RELATED WORK
Several works have been investigating the TDM problem
[5]–[7] to face SDN-based architecture shortage.

Authors in [2] propose an architecture that autonomously
make QoS related decisions based on network topology, dis-
tributed controllers status and application requirements from
the business layer. However, any implementation is proposed
to test proposed architecture.

Peros et al. [11] propose an SDN framework to support
dynamic QoS for the IoT network. However their QoS
aware approach is based on a given default QoS profile
values instead of current IoT network traffic state. Tangari
et al. [12] give approach for heterogeneous applications
resources monitoring with frequent network state updates.
Their resources monitoring way is seated on a network with
static topology.

Deng et al. [13] propose AQRA for SDN-based IoT
network to fulfill a multiQoS requirement of high-priority
IoT application. The key idea is to remove low or medium
priority flows in favor of high priority flows until QoS
requirements can be guaranteed. In EFQM [10], authors
propose an enhanced QoS management approach, that re-
duces, among others, spent time within the control plane

(CP). However, both AQRA and EFQM are limited by
the fact that they treat the problem with a static consideration
of the QoS management aspect - all decisions relating to
this were invariant from the network topology view and all
along the experimental time. On top of that, they consist of a
centralized CP .

In contrast to previous works, EFQM++ promotes a use
of several QoS metrics and gives an approach that deals with
QoS decisions over time in a dynamic network topology. It
manages QoS decisions related to both the real-time traffic
demand as well as topology changes. As opposed to works
in [2], EFQM++ proposes an implementation to test the
proposed self-adaptive framework architecture. To answer
challenges of reliability, scalability and fault tolerance, our
framework runs under a clustered distributed controller in the
emulated setting of SDNs.

III. SELF-ADAPTIVE QOS-MANAGEMENT FRAMEWORK
This section provides a provides a comprehensive review on
TDM in SDN controllers in general. The proposed frame-
work architecture with it different components and abilities
are explained. The TDM is considered to be the key element
for the SDN CP scalability problem since it tests its abilities
to cope with constant topology changes. In an SDN-based
network, the CP is responsible for making decisions on how
packets should be forwarded by one or more network devices
and pushing such decisions down to the network devices for
execution [1]. To be able to give a good forwarding decision,
the knowledge of the network topology is necessary. The
deployment of the TDM in SDN is well described in [2].

A. PROPOSED FRAMEWORK ARCHITECTURE
The architecture of the EFQM++ consists of two compo-
nents interacting between different SDN architecture levels.

Fig. 1 depicts the framework architecture components
along with the communication channels that connect them.
The key idea of this work is to alleviate scalability concerns
by extending the responsibilities of the CP in level above
(management) in order to relieve the load on the controller.
The control layer provides information about network topol-
ogy status and devices statistics.

The Management layer hosts the key elements of our
framework: a database and a QoS-management Application.
This layer monitors and stores information about network
topology and manages QoS based on QoS-aware manage-
ment algorithm in [10]. EFQM++ is then able to : (1)
detects new devices that join the network, (2) gets the real-
time topology updates information, (3) gives availability
of control devices, (4) provides current application traffic
requirements, (5) calculates QoS-aware paths between pairs
of devices,(6) route traffic according to the topology state,
the controllers load and the current application demands.
The rest of this section presents EFQM++ communication
mechanism approach. This communication mechanism gives
factors to deal with scalability for distributed states manage-
ment problem.

2 VOLUME 4, 2016

A. Bassene et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1. Self-adaptive QoS-aware framework architecture for SDN-based IoT network

B. EFQM++ PROCESSING APPROACH
This section describes the EFQM++ framework components
and evaluates its end-to-end transmission delay compared to
EFQM [10] and AQRA [13].

The framework presents a self-adaptive QoS management
solution that deals with highly dynamic SDN-based IoT net-
works. The proposed design is first focused on the monitoring
of the SDN CP status in a distributed environment. For this
purpose, the solution consists of three elements associated
with a database: a Collector, a Monitoring Agent and a QoS-
aware algorithm given in [10].

The QoS-aware algorithm is a SA-based algorithm used to
find the approximate optimal path solutions based on topol-
ogy information and on-demand application data (priority).

On-demand application data is managed as follows: ac-
cording to the flow priority (QCI) value and collected
controllers statistics information (load), a binary decision is
made regarding to switch between the least loaded controller
and a default master of concerned switch. If current flow is
delay-centric, then it is forwarded through the least loaded
controller. Otherwise, the default master controller is used.
These tasks are delegated from controllers to the manager
framework components via the northbound API. Once paths
and controllers state information are available, the framework
processes the packets promptly with necessary resources
(topology information) and decisions to gain the final des-
tination. Thus, the framework with a global view of the
network, computes and selects the path that is most suited
with respect to packets requirement. The manager framework
ensures the success of the distributed states management to
tackle problems related to scalability.

Fig. 2 shows this communication mechanism. A detailed
processing is described in Algorithm 1. In our test we limit
to a cluster of three instances for the control plane.

Our framework, with information on the number of con-
trollers in the cluster (i), each controller statistics (C_Load)
and traffic priority (Flow priority), processes as shown in
Algorithm 1.

Upon a flow arrives from a switch in CP to its master
controller, if the flow is delay-centric, the master controller of
the corresponding node is ordered (with a Packet_Out mes-

Algorithm 1: Communication processing in
EFQM++

REQUIRE: i, C_Load; Flow_priority
When a packet comes to a switch in data plane
A Packet_In message is sent to the master controller
if i is greater than or equal to 1 then

if the flow is delay-centric then
Packet_Out: Returns the path with
minimum-delay and updates the flow entries
on switches along corresponding path

else
A Packet_In message is forwarded to the

manager framework. The framework picks
the least-loaded controller in cluster.

Send path with maximum-Bandwidth
information to the chosen controller.

Packet_Out: Returns the path with
maximum-Bandwidth then pushes the flow
rules to the switches in data plane.

end if
end if

sage) to send the path with minimum-delay corresponding to
the packet_In message header. The controller then updates
entries on the switches along dedicated path. By contrast,
if the flow is not delay-centric then a Packet_In message is
forwarded to the manager framework in the application layer.
The manager framework picks the least loaded controller
from the cluster and send it information about the adequate
QoS-aware path (maximum-bandwidth or best-effort) from
dedicated paths list. The controller then pushes the flow rules
to the switches in data plane (Packet_Out message). Thus,
traffic is forwarded to our manager framework only if it is
not delay-centric and if there are more than one controller
instances as described in Algorithm 1.

We adopt this approach because it has been shown that
a single control plan component is good enough to cover
transmission delay requirements in most topologies [14].
Although, in clustering mode, the default master can an-

VOLUME 4, 2016 3

A. Bassene et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 2. Communication mechanism within EFQM++ Framework

swer delay concerns, while the least loaded is chosen to
avoid/reduce congestion that drastically impacts throughput.
Thus, EFQM++ gives availability and robustness since a
distributed cluster of controllers can coordinate to provide
resilience and fault-tolerance, which is required if any of the
controllers fails [15].

The collector component is developed as a core application
of ONOS and it designed for a clustered environment. It
collects the real-time statistics of individual controller sys-
tem metrics that include CPU, memory, disk I/O, network
I/O. It then provides an aggregation service to compute the
overall load of the entire CP . It is based on the read plug-
ins of collectd system and the ”write_onos” Python plug-in
module to send the real-time statistics to listener service of
the collector. This proposed collection solution gives real-
time load statistics of individual controllers and the entire
ONOS cluster [16]. These results can be helpful to identify
controllers load.

The Monitoring Agent pushes the network topology status
to the centralized PostgreSQL database.

The performance evaluation is done in two steps: firstly,
the overall end-to-end performance in terms of delay when
the underlying OpenFlow switches are connected to one con-
troller. Secondly, when the underlying OpenFlow switches
are connected to multiple controllers in a clustered mode.
Indeed, ONOS supports running multiple controllers in a
clustering mode where they share state among each other.
Furthermore, when the underlying OpenFlow switches are
connected to more than 1 controller, they determine which
controller should be the master and which should be the
standby/slave. This is very useful for fault tolerance and high
availability purposes [9]. The RY U controller too has the
advantage of being able to work in a distributed manner

[17]. The next section illustrates performances comparison
between these two previous SDN controllers, which represent
the “brains” of the network.

IV. EXPERIMENTAL SETUP
The TDM is crucial to evaluate controller performance.
This section aims to compare ONOS and RY U controllers
TDM efficiency to deal with highly dynamic network. Our
testbed is deployed using different virtual machines (VM)
hosted on VirtualBox Version 6.0.4 r128413. The PC is x64-
based with Intel(R) Celeron(R) CPU N3060 2.4 GHZ and
8 GBytes of memory. Among these three VM, we deploy
ONOS controller (”.ova” VM), RY U controller and its
requirement packages and a virtual network infrastructure for
simulation Mininet.

The Mininet-Wifi [18] emulator also enable a dynamic net-
work topology and mobility. In addition, it supports several
built-in basic network topologies like Minimal topology, Sin-
gle topology, Linear topology, Tree topology, etc. [19]. The
first testbed environment executes the Mininet command to
extend the network and its underlying topology at running
time.

The ultimate speed test tool Iperf [20] is used for network
performance measurement. In SDN , Iperf can create data
traffic and report parameters as bandwidth, throughput, jitter,
and packet loss between two nodes in both directions.

Our first testbed evaluates the statistics related to the con-
trollers performance. An scalable IoT topology is generated
in a dynamic manner to mimic real highly dynamic network
topology. We conceive a custom topology with 6 different
steps with growing numbers of switches and hosts as shown
in Table 1.

Our evolutionary proposed testbed topology group to-
gether a well-ordered set of real topologies ranging from

4 VOLUME 4, 2016

A. Bassene et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Scenario Table for Experiment.

Steps Number of Switches Number of Hosts
0 1 2
1 2 3
2 3 4
3 6 7
4 12 13
5 Link for mesh topology 13
6 Add a host to generated Switches 24

a linear topology to a more complex mesh topology with
respectively 12 switches and 24 hosts. This testbed steps
evolves for each SDN controller aim to evaluate at least two
major QoS performance parameters - the efficiency of the
TDM of each SDN controller - the scalability, to mention
the controller capability to handle the growth of the network.

In this first testbeb, a mesh topology was created in running
time using mininet command. This means four layer of
switches aligned in a tree topology with links connecting
switches to get the mesh topology. In each step, we evalu-
ate performances of controllers under both topologies while
considering metrics like latency, throughput and jitter.

Our second test environment is deployed in a distributed
way to support multiple controller instances. It is about
comparing transmission delay between proposed framework
and literature in various control plan status.

The experimental setup uses a cluster of 3 SDN con-
trollers in the CP . Firstly, while all controllers are added
to all switches/devices, we bring down two controllers to
let the remaining one become the master. This standalone
mode is used for a first comparison step. Secondly, we
enable the cluster by starting the stopped controllers and
perform the second evaluation. The switches are connected
to the master controller with the IP addresses indicating the
standby controllers for each connected switch. The clustered
controllers perform load balancing by distributing the num-
ber of connected OpenFlow switches between instances of
the controllers in the cluster.

The test mode is using an incremental number of switches,
the deployed testbed network consists of 3 OpenFlow core
switches, 2 OpenFlow edge switches, 15 OpenFlow-enabled
access points connected to 20 end devices. Since we are in-
terested in the dynamic aspect of the data plane, the switches
are increased by 15 per test until a maximum limit of 90
switches. The total number of iteration is counted as 6 in both
standalone and clustering mode.

V. PERFORMANCE EVALUATION
The most important component of any SDN controller ar-
chitecture is the TDM . TDM is a service that typically
runs continuously in the background of all SDN controllers
and remains a master of all decision-making. It is therefore
important to know requirement performance and load it im-
poses on the chosen controller. We evaluate these controllers
performance in terms of some QoS parameters such as delay,

throughput, and jitter while deploying a predefined dynamic
topology.

A. CONTROLLERS PERFORMANCE IN DYNAMIC IOT
TOPOLOGY

This section first defines testbed performance parameters
before evaluating metrics under previous proposed steps for
the two SDN controllers - ONOS and RY U . We have
conducted each test with a 10 number of iterations to have
optimal average measurement results. The test will run for
100 seconds, in each of these 10 iterations. For each test, the
network performance parameters (Average Delay, Through-
put, and Jitter) are measured to evaluate the performance of
the controllers.

Delay Measurement: the Delay is the time it takes for
traffic to leave the sender and arrive at the destination. It can
measure based on the Round-Trip Time (RTT). The average
RTT is in milliseconds (ms) and can be measured using ping
tool between two hosts, with a total of 10 ICMP packets.

The average latency values all along with the different
steps described in Table 1 is observed in Fig. 3. The X-axis
illustrates the average latency of packets, while the Y-axis
depicts various network topology status. We can notice the
average latency variation from the initial topology before any
change to mesh topology with hosts adding step (final step).

The results in Fig. 3 show that the average latency of
ONOS is initially about 0.099ms compared to 0.211ms for
that of RY U . From the initial static single topology to the
next step, the latency increases faster for RY U than for
ONOS. For steps 1 (stp1) and 2 (stp2) of Table 1, we
observe the results when adding a switch with one host.
We note that the average latency increases by a relatively
small value for ONOS (0.013ms). In contrast to ONOS, the
latency generated by switch adding operation is considerably
too high for RY U , about 3 times that of ONOS. The reason
is that RY U takes more time for updating new switch while
ONOS built-in mechanisms support updating components
in running time. This allows a flexible adding functionality
approach to the controller.

The average latency value for ONOS stay constant when
the number of switches is greater than or equal to 12 (from
0.139ms to 0.175ms). In contrast to ONOS, RY U latency
is increasing with the topology state. This means that, RY U
controller is more sensitive to dynamic topology changes
than ONOS, even when it just a simple host adding step
(stp6). From stp6, any latency variation is notice for ONOS,
meaning that ONOS is less or insensitive in terms of
latency during host adding operation. Therefore, any host
discovery mechanism is needed for improved latency when
using ONOS controller. Even less if ONOS can be used to
leverage this host discovery mechanism without overhead.

Throughput Measurement: it defines the quantity of useful
data that can be transmitted per unit time. The throughput in
Mbps can be measured using Iperf command between Iperf
client and server.

VOLUME 4, 2016 5

A. Bassene et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3. Average latency for highly dynamic SDN-enable IoT network

FIGURE 4. Average jitter for highly dynamic SDN-enable IoT network

The throughput evaluation results are ploted to observe
it variation over time. This figure has not been inserted.
The throughput values for ONOS and RY U controllers
kept stable during testbed deployment scenarios. The av-
erage throughput for ONOS is around 11 Gbit/s while
RY U gives around 8.4Gbit/s. In contrast to RY U , ONOS
controller gives the best throughput performance. This is
because of built-in mechanisms of ONOS deals with con-
necting/disconnecting components while the controller is
running. Moreover, it has also an inherent support for very
large scale networks as mentioned in [21]. One possible ex-
planation for a lowest values of throughput for RY U would
be the congestion in the network switches due to switches
adding operation, which results in network performance
degradation. In fact, RY U is a resource demanding controller
which uses CPU and RAM utilization to optimum and thus
results in degraded performance in presence of increasing
number of nodes.

Jitter Measurement: it refers to the variation in latency of

packets.

Fig. 4 illustrates the results of jitter parameter. The jitter
is the latency variation and does not depend on the latency
(response time or RTT). The jitter result for all steps is
relatively too low (under 0.1ms) for both ONOS and RY U
controllers, except at times 78s and 93s. Thus, we observe
that jitter do not vary considerably, which refers to a reliable
connection. Indeed, the jitter value is particularly essential on
network links steadiness because a high jitter can break the
connection. The average jitter variation recorded at times 78s
(14.9ms) and 93s (14.1ms) is related to links disconnection
and re-connection when adding switches in steps stp3 and
stp4.

The testbed results show that the performance of ONOS
in terms of throughput is better than that of RY U . In terms
of latency, the latency generated by ONOS is smaller than
that of RY U while recorded jitter values, this shows that all
of these controllers can give reliable connection support in
a highly dynamic network environment. The general exper-

6 VOLUME 4, 2016

A. Bassene et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

imental results show that ONOS outperforms RY U in all
along with testbed steps, granting flexible, dynamic, and scal-
able network topology re-configurations. From this analysis
result, ONOS controller is adopted for proposed framework
control plan device since it exhibits the best experimental
results showing that it is able to respond to requests more
promptly under various traffic loads.

B. EFQM++ EVALUATION

EFQM as well as AQRA are based on a static state of
network topology while considering QoS management de-
cisions most related to generated traffic. In addition, these
proposals also consist of a centralized entity that can increase
the risk to be a single point of failure [2].

In this section, we compare the performances of EFQM+
+ with those of EFQM and AQRA in both single as well
as multiple controllers environment to mention the scalability
problem in distributed systems. The main purpose of this
evaluation is to show how QoS management decisions based
on both generated traffic and the dynamic aspects (load and
control plane statistics) of the underlying network topology
could help improve the end-to-end transmission delay. A well
synchronous distributed control plane such as the one used
here gives reliability, robustness and better transfer delay.

Our second testbed setup is previously described in sec-
tion IV. Our framework application uses ONOS controller
RESTAPI to get the global network topology details and
controllers load. The framework consists of a Python con-
sole application with a database. the information from the
controller and data plane nodes is stored using PostgreSQL
docker container.

The experimental results for this second testbed in both
standalone as well as clustering modes can be observed
in Fig. 5. It compares flow end-to-end transmission delay
among EFQM++, EFQM [10] and AQRA [13]. From Fig.
5, we notice that the values of the end-to-end delay when
working in standalone mode as well as clustering mode is
small owing to its optimum features values (low latency,
broadband and reliable connection) which contribute to the
improvement in the QoS.

Nevertheless, when working in standalone mode, we can
observe that EFQM++ improves end-to-end transmission
delay of EFQM and AQRA by an average values of 6.68%
by 13, 36%, respectively. The reason for this is that, the
low values of throughput in RYU-based environments (like
AQRA and RY U) when failover (disconnection and re-
connection) occurs at data plan level. In fact, all OpenFlow
switches have multiple paths for each source/destination pair
of nodes. When a link fails, the controller, based on the pre-
established paths, monitors the status of each port of each
OpenFlow switch. The controller decreases transmission rate
of the port that exceeds the rate threshold to switch the flow
with minimum rate to another path. Decreasing transmission
delay has drastically impacted delay for low throughput
environments (EFQM and AQRA delay in Fig. 5).

The end-to-end delay with a single controller increases
compared to clustering mode when the number of OpenFlow
switches is larger than 35. Indeed, a single controller creates
a performance bottleneck when the number of Packet-In
requests towards it increases i.e. when number of switches
is up to 35 (as illustrated in Fig. 5).

Clustering mode reduces the end-to-end delay by an aver-
age values of 6.72% and 12.25% compared to EFQM and
AQRA, respectively. These results verify the fact that, the
support of the clustering feature results in reducing the end-
to-end delay as mentioned in [22]. Clustering mechanism
also gives better scalability and performance by enabling a
load balancing function to distribute the load evenly across
the nodes between the source and destination. Load balancing
reduces congestion and leads to average good delay in trans-
mission time (around 76.368 ms). In addition, with clustering
mode, the processing time for packetIn messages is reduced
[23], this could explain latency reduction when number of
switches is greater than 35 (see Fig. 5). However, the latency
increases with the number of switches when this number
is less than 35, this may be having extra synchronization
overhead in distributed controller clustering. Compared to
EFQM++ framework and EFQM , AQRA suffers from
delays in both clustering and standalone mode. This delay
is due to the network degradation caused by SDN switches
transmission disruption, which leads to packets lost and a de-
lay extension as shown in [10]. This delay is more noticeable
if several paths changes occur, especially in a low bit rate
transmission network.

VI. CONCLUSION
We proposed EFQM++, a self-adaptive QoS-management
framework of SDN controllers for highly dynamic IoT
networks with more or less switches in the data plane.
Distributed controllers are configured to adapt the network
according to on-demand applications and available control
plan resources. The experimental results show that EFQM++
reduce the average transmission delay by 6.72% and 13.25%
compared to EFQM and AQRA, respectively.

According to on-demand applications, we switch from
default master to new master thanks to a centralized entity
to guarantee delay for delay-centric traffic. Stoping or idling
least loaded controllers instead of switching between them
promotes better energy-aware, even if we can achieve accept-
able response time. Reducing the energy consumed is be-
coming an increasingly challenging research direction [24].
Therefore, we plan to explore energy consumption as well
as to satisfy predefined flow response time in a distributed
clustering environment based on SDN controllers.

REFERENCES
[1] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and

O.Koufopavlou.: RFC 7426: Software-defined networking (SDN), ”Layers
and architecture terminology”, IRTF, ISSN: 2070-1721, pp. 1-35, 2015

[2] I. Bedhief, M. Kassar, T. Aguili, L. Foschini and P. Bellavista, ”Self-
Adaptive Management of SDN Distributed Controllers for Highly Dy-

VOLUME 4, 2016 7

A. Bassene et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 5. End-to-end flow performance comparison.

namic IoT Networks”, In Proc. 15th IWCMC, pp. 2098-2104, Morocco,
2019

[3] F. Bannour, S. Souihi, and A. Mellouk, ”Scalability and reliability aware
sdn controller placement strategies”, In Proc. IEEE CNSM, pp. 1–4,
Tokyo, 2017

[4] K. S. Sahoo et al., ”On the placement of controllers for designing a wide
area software defined networks”, In Proc. IEEE TENCON, pp. 3123-3128,
Penang, 2017

[5] S. Khan, A. Gani, A. W. A. Wahab, M. Guizani, and M. K. Khan,
”Topology discovery in software-defined networks: Threats, taxonomy,
and state-of-the-art”, IEEE CS&T, vol. 19, no. 1, pp. 303–324, 2017

[6] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, ”Efficient topology
discovery in software defined networks”, In Proc. IEEE ICSPCS, pp. 1–8,
Gold Coast, QLD 2014

[7] Hasan, Dana & Othman, Mohamed, ”Efficient Topology Discovery in
Software Defined Networks: Revisited”, In PCS, Vol. 116, pp. 539-547,
2017

[8] RYU Documentation, https://bit.ly/3bbSOMb. Last accessed 11 Nov 2020
[9] SDNHUB, ONOS Tutorial, http://sdnhub.org/tutorials/onos. Last ac-

cessed 2 Dec 2020
[10] A. Bassene, B. Gueye, ”An Enhanced Flow-based QoS Management

within Edge Layer for SDN-based IoT Networking”, In EAI AFRICOMM,
December 2020.

[11] S. Peros, H. Janjua, S. Akkermans, W. Joosen, and D. Hughes, ”Dynamic
QoS support for IoT backhaul networks through SDN”, In Proc. IEEE
FMEC, pp. 187–192, Barcelona 2018

[12] G. Tangari, D. Tuncer, M. Charalambides, Y. Qi, and G. Pavlou, ”Self-
adaptive decentralized monitoring in software-defined networks”, In IEEE
TNSM, vol. 15, no. 4, pp. 1277–1291, 2018

[13] G. Deng and K. Wang: ”An Application-aware QoS Routing Algorithm for
SDN-based IoT Networking,” IEEE ISCC, pp. 00186-00191, Natal, 2018

[14] B. Heller, R. Sherwood, and N. McKeown, ”The controller placement
problem”, In Proc. ACM FWHTSDN, pp. 7–12, Finland 2012

[15] A. S. Muqaddas et al., ”Inter-controller traffic in ONOS clusters for SDN
networks”, In Proc. IEEE ICC, pp. 1-6, Kuala Lumpur, 2016

[16] Shah, Syed et al., ”An adaptive load monitoring solution for logically
centralized SDN controller”, In Proc. APNOMS, pp. 1-6, Kanazawa, 2016

[17] A. L. Stancu et al., “A comparison between several Software Defined
Networking controllers”, In Proc. TELSIKS, pp. 223-226, Serbia, 2015

[18] Mininet-Wifi, Emulator for SDN Networks, https://bit.ly/3tp3QpN. Last
accessed 24 Oct 2020

[19] Islam, Md Tariqul & Islam, Nazrul & Refat, Md., ”Node to Node Perfor-
mance Evaluation through RYU SDN Controller”, In WPC, Vol. 112, pp.
555–570, 2020, 10.1007/s11277-020-07060-4.

[20] Dugan, J. et al., ”iPerf-The ultimate speed test tool for TCP, UDP and
SCTP”, línea]. https://iperf.fr. Last accessed 23 May 2020

[21] L. Mamushiane et al., ”A comparative evaluation of the performance of
popular SDN controllers”, In Proc. WD, pp. 54-59, Dubai, 2018

[22] J. Ali et al., ”QoS improvement with an optimum controller selection for
software-defined networks”, PLoS One, vol. 14, no. 5, pp. e0217631, 2019

[23] Abdelaziz, Ahmed et al., ”Distributed controller clustering in software
defined networks”, PLOS ONE, Vol 12, pp. e0174715, 2017

[24] F. Balde et al., GreenPOD, ”Leveraging queuing networks for reducing
energy consumption in data centers”, In Proc. ICIN, pp. 1-8, Paris, 2018

8 VOLUME 4, 2016

