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Abstract. Geolocation of Internet hosts relies mainly on exhaustive tabulation
techniques. Those techniques consist in building a database, thatkeepap-
ping between IP blocks and a geographic location. Relying on a single Incatio
for a whole IP block requires using a coarse enough geographilutieso As

this geographic resolution is not made explicit in databases, we try in thés pap
to better understand it by comparing the location estimates of databases with a
well-established active measurements-based geolocation technique.

We show that the geographic resolution of geolocation databases isai@eco
than the resolution provided by active measurements for individuaddifeases.
Given the lack of information in databases about the expected location err
within each IP block, one cannot have much confidence in the accof#usir lo-
cation estimates. Geolocation databases should either provide informiatioh a
the expected accuracy of the location estimates within each block, of iefega
mation about how their location estimates have been built, unless databases h
to be trusted blindly.
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1 Introduction

Location-aware applications have recently become morevaoré widespread. Exam-
ples of such applications comprise targeted advertising&mn pages, displaying local
events and regional weather, automatic selection of a Eggyto first display content,
restricted content delivery following regional policiesd authorization of transactions
only when performed from pre-established locations. Egqtieation may have a dif-
ferent requirement on the resolution of the location egimnaNevertheless, as IP ad-
dresses are in general allocated in an arbitrary fashi@netis no strict relationship
between an IP address and the physical location of the gameing physical inter-
face.

Database-driven geolocation usually consists of a dagabagine (e.g. SQL/MySQL)
containing records for a range of IP addresses, which atedchlocks or prefixes.
When coupled with a script embedded in a website and uponra elieess to the web-
site being detected, a request can be sent instantly to thibake. This request can be to
check if the IP address has an exact or longest prefix matdi ) lakth a corresponding
geographic location and coordinate. Since there is no bheteasurement involved but



merely a simple lookup, the request can be served in a mdttaillseconds. The ex-
pected time for which a website should be fully loaded, withcausing any nuisance,
is in general within one second. Most commercial databaseqers offer highly op-
timized scripts as well as abundantly documented appdicgitrogramming interfaces,
which meet this short expected response time. The datalvass geolocation thus
seems to be a useful approach.

Examples of geolocation databases@esURL [1], the Net World Map project [2],
and free [3] or commercial tools [4-9]. Exhaustive tabwlatis difficult to manage and
to keep updated, and the accuracy of the locations is unttearactice however, most
location-aware applications seem to get a sufficiently ggeographic resolution for
their purposes.

In this paper, we try to better understand the resolutioneml@cation databases,
by comparing their location estimates with a well-knowniactneasurements-based
geolocation technique, CBG [10]. We show that, as expethedjeographic resolution
of databases is far coarser than the resolution providedttiyeameasurements, typi-
cally several times coarser than the confidence given byeasteasurements. As most
geolocation databases do not give confidence in the accuafdbgir location records,
they are likely not to be trustworthy sources of geolocatidnrmation if precise IP
address-level locations are required. Applications tbatiire as much accuracy as pos-
sible would thus typically have to rely on active measuretsiemot databases. To im-
prove the quality of current geolocation databases, wevelhat the database records
should contain information about the expected confidentiedhocation estimates.

The remainder of the paper is structured as follows. Seétintroduces the datasets
used. Section 3 studies the geographic resolution of dsgab&ection 4 describes our
active measurements for geolocating Internet hosts. Itides, we compare the reso-
lution of active measurements with location estimates fdatabases. Finally, we con-
clude in Section 6.

2 Datasets

During the past few years, a growing number of companies bpeat a lot of effort
in creating databases for geolocation purposes. Most aketkempanies, like Max-
mind [11], Hexasoft [8] and Quova [9], provide commercialailable databases with
periodic updates. There are also freely available datalsmaseh as Host IP [3].

One of the problems of geolocation databases is that typioak does not know
much about the methodology used by the database providathermtheir geographic
information. One has to blindly rely on the claimed geograpésolution they provide.
There are four basic geographic resolution levels thatroamost databases: zipcode,
city, country and continent. Note that some databases maynase resolutions than
those four, like regions that may relate to countries, ceamis, or some intermediate
resolution. In most instances, we expect that the zipcodehancity granularity will be
very similar. The country resolution is widely recognizedt the typical one that is re-
liable from databases. Many databases do not give any iafitmmabout the expected
geographic resolution of the database records, and whendtienot all records do
contain this information. The price of commercial datalsasereases with improved



geographic resolution, or with additional information abattributes of IP blocks like

ISP, connection type of hosts, and in a single instance camdiglabout the location es-
timates. Note that we know one example of geolocation datatieat provides a notion
of confidence related to the uncertainty about where theusedactually lies compared
to the location estimate [9]. This notion of confidence is Begr not quantitative, i.e.

it does not express how far an IP address belonging to theolék I expected to be

from the location estimate provided, rather the type of leogtonnection that the host
is using.

In the sequel of this paper, we restrict our attention to tatabases. These com-
mercial databases, GeolP by Maxmind [11] and IP2LocatioH&yasoft [8], are used
because of their popularity (see [8, 11] for a listing of soofieheir customers) and
their expected reliability. The number of IP blocks and tbeerage in IP addresses of

Database| Public blocks|Special blocks|Total blocks|Public addresses|Total addresses
Maxmind 3,278,391 2| 3,278,393 2,322,257,277 2,355,811,96bp
Hexasoft 5,111,309 44, 5,111,353 3,991,797,760 4,294,967,296

Table 1. Overview of the 2 selected databases.

the two databases is shown in Table 1. Maxmind contains nhare3tmillion blocks,
and Hexasoft more thasmmillion blocks. Note that a few blocks, called special bleck
according to RFC3330 [12], should not be considered.

3 Geographic resolution of databases

Based on the information provided in the geolocation databait is hard to say any-
thing about the actual geographic resolution of the locatistimates. We merely know
that most records contain either a city or a country nai®é % of the databases records
in Maxmind contain a city hame§.6% for Hexasoft), then if no city name can be
found, 3.4% of the records contain a country nand8.e% for Hexasoft). When nei-
ther a city name nor a country name is present in the recordninent name or a
federation of countries will typically be found. Note thansetimes records contain ge-
ographic coordinates only. While the area of countries amtiments are well-defined,
the area of a city depends much on what is meant by the boesdafrthe considered
city. For example, taking the largezio cities in the world shows well how much the
area of a city can vary, especially depending on whethentherbs or the "metro” area
are considered to be part of the city or not.

When we analyze the number of unique cities in both Maxmindexhasoft, we
obtain110, 349 unique cities in Maxmind and5, 133 in Hexasoft.100, 087 cities in
Maxmind occur each in a single IP block2( 918 for Hexasoft), andl0, 262 cities
occur each in multiple IP block(215 in Hexasoft). When several IP blocks have

Shttp://ww. ci tymayors. conl statistics/largest-cities-area-250.
ht m



the same city information, they will have the same locatistingate in the database.
Note that a city is defined by a city name, but also a countryaacantinent when this
information is available in the databases. Some city namsesrdn several countries
and/or continents. When we compare the occurrence of unitjugaenes (string-wise),
we observe that among a total Bf844 unique city names present in the databases,
7,618 are present in one database only, a2d are in both.
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Fig. 1. Difference in location between Maxmind and Hexasoft.

In geolocation databases, a unique location is associagediven city. It is thus im-
possible to infer directly the geographic resolution usgthie databases by comparing
the location estimates of different IP blocks for a given.ditowever, we can compare
the location estimates from Maxmind and Hexasoft, hopirag tthe difference between
their location estimates will give us an indication of thggographic resolution. We rely
on a free database, Host IP [3], that contain56, 506 IP blocks, to perform lookups
in the two other databases. For each IP block of Host IP, weedakdP address and use
it to lookup the two databases. We then compute the differd&etween the two loca-
tion estimates returned by the databases. Figure 1 distilaysumulative distribution
of the distance between the locations given by the two datsbahen performing a
lookup on IP addresses from the Host IP database. We prdwide tifferent curves,
one for the distribution of the distance when the city stsingatch between Maxmind
and Hexasoft, when they do not match, and irrespective dfitiidevel match. Among
the 1,264,892 IP addresses looked up77, 736 have the same city-level name in the
databases, whilg887, 156 do not have matching city names. We see on the curve that
corresponds to matching cities that the difference in looabetween the databases
tends to be far smaller than when the city names do not matepeming on whether
the city names match between the two databases entrieypicaltdistance between
their location estimates differs much. When the IP blockenfthe two databases have
the same city name information, their locations are verge|typically less thabOKm.



When the city names do not match on the other hand, the losatiiffer more than
usual. Globally, about0% of the IP lookups give a difference smaller th&)dKm. If
the differences observed between the databases were ti nef®me way differences
in geographic resolutions used by them, then we would dethatehose resolutions
go from1Km up to thousands of Km.

4 Measurements-based geolocation

Given that we cannot obtain the actual geographic locationamy IP addresses in the
Internet, we need to rely on location estimates. To obtaiation estimates for a large
enough number of IP hosts, we need accurate location es8mm@obr this, we rely on
active measurements. Active measurements have the adeasftproviding an explicit
estimate of their accuracy.

Previous works on measurement-based geolocation of kiteasts [13,14] use the
positions of reference hosts, called landmarks, with a-wsdiwn geographic location
as the possible location estimates for the target host.l@hds to a discrete space of an-
swers; the number of answers is equal to the number of refedswsts, which can limit
the accuracy of the resulting location estimation. Thisdesduse the closest reference
host may still be far from the target. To overcome this limiita, the authors of [10] pro-
pose the Constraint-Based Geolocati@BG) approach, which infers the geographic
location of Internet hosts usingultilateration. Multilateration refers to the process of
estimating a position using a sufficient number of distartoesome fixed points. As
a result, multilateration establishes a continuous spheaeswers instead of a discrete
one. This multilateration with distance constraints pdeg an overestimation of the
distance from each landmark to the target host to be loctited determining a region,
i.e. confidence region, that hopefully encloses the locatiomettarget hosts [10]. For
instance, the confidence region allows a location-awardéicgpion to assess whether
the estimate is sufficiently accurate for its needs.

Although showing relatively accurate results in most caiesse measurement-
based approaches may have their accuracy disturbed by marges of distortion that
affect delay measurements. For example, delay distorteylme introduced by the cir-
cuitous Internet paths that tend to unnecessarily inflatetid-to-end delay [15-17] and
by the potential existence of bottleneck links along théagato deal with these sources
of distortion,GeoBuD, Octant, andTBG were proposed by [18—20]. The GeoBuD tech-
nigue shows that estimating buffering delays ttaceroute measurements, at interme-
diate hops along the traceroute path between a landmarks éamdet host enables
to improve the accuracy of geolocation of Internet hostgshtnsame way, Topology-
Based Geolocation (TBG) and Octant which are an extensionuttilateration tech-
nigues with topology information were proposed. TBG addiéilly uses inter-router
latencies on the landmark to target network paths to find a&iphlyplacement of the
routers and target that minimizes inconsistencies witm#teork latencies. TBG relies
on a global optimization that minimizes average positionrdior the routers and target.
Octant differs from TBG by providing a geometric solutioghaique rather than one
based on global optimization. Although it considers intediate routers as additional
landmarks, Octant also uses geographic and demographbiaiafion. Geographic and



demographic constraints are used in Octant to reduce thenrege where the target
may be located. Only landmasses and areas with non-zerdapiopuare considered
as possible target locations [19]. Furthermore, it takés @&@count queuing delays by
using height as an extra dimension. It requires signifigasdmputational time and re-
sources. All these techniques generate a huge amount dfemaakin the network for a
small gain in accuracy.

To illustrate the marginal improvement of complex measeibased geolocation
techniques, we do not only consider CBG, but also add to iinasibn of the bottle-
neck bandwidth on the path. The bottleneck bandwidth carebeet! as the maximum
throughput that is ideally obtained across the slowest divdr a network path. CBG
with bandwidth estimation allows the improvement of thelgeation estimation given
by CBG. Additional delay distortions caused by the bottgnalong the path are re-
moved from the overestimations of distance constraintsdisiine the region enclosing
the target host in CBG, allowing tighter overestimatioret ttesult in a smaller region.
Smaller regions that still enclose the target host provid®ee accurate location esti-
mation.

4.1 CBG with bandwidth estimation

To estimate the bottleneck bandwidth over a network pativéxe each landmark and
a given target host, we uSProbe [21]. SProbe estimates bottleneck bandwidth in un-
cooperative environmentsg. a measurement software is only deployed locally on the
measurement host. SProbe relies on the exploitation of@eprotocol. It sends two
SYN packets to an inactive port on the remote host to which it app#460 bytes of
data. Since the port is inactive, the remote host answetsegetpackets with twBST
packets ofl0 bytes each. For the native traceroute used by Octant, TBf5GaoBuD,
three packets are sent to each intermediate hops betweairae snd a destination
causing an important overhead. SProbe produces accudhfasiestimates using little
amount of probing data, so that it can scale to a large nunflastionates.

For our evaluation, we rely 089 PlanetLab nodes [22] as landmarks and we use
a subset of the two commercial databases (Maxmind and Higxasadnput for hosts
to be localized. Each landmark estimates the bottleneckiviiaith towards a given
target host by sending SYN packets. We found in Section 3 that there 226 city
names that are unique and can be found in both databaseg thsise city names
we find 41,797 IP blocks from Maxmind matching those city hames. Since wedne
"pingable” addresses within each IP block to be used in measuremeetsise the
single ping approach to find at least one IP address per bldeksingle ping approach
consists in brute-force probing all IPs within a prefix, atmpping the probing within
the prefix as soon as a single IP address has answered. W& féth IP blocks which
have at least one pingable IP address for Maxmind. For theasték database, we
have41, 758 IP blocks among which5, 823 contain at least one pingable IP address.
Using the set of pingable addresses, Figure 2 presents thelative distribution of
the confidence region in Kirfor location estimates in both the Maxmind and Hexasoft
databases. Figure 2(a) shows that CBG with bandwidth estimassigns a confidence
region with a total less tharD* km? for about20% of the location estimates, whereas
the basic CBG has only0% for the same confidence region. For IP addresses that
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Fig. 2. Confidence region.

are given a confidence region betwelé km? and10° km?, bandwidth estimation is
less and and less useful. Finally, when the confidence regitarger than10 km?,
bandwidth estimation is useless, or even makes the conédegion larger than the
classical CBG technique.

Measurement-based geolocation techniques assume thiargfee host is able to
answer measurements. Active measurements will be impedgthen we rely ohCMP
echo probes for instance, which can be filtered by a firewall. Weeolssthat for most
IP blocks, we get only a few IP addresses that answer our projggcally only one.

5 Comparison between databases and active measurements

Having discussed the geographic resolution of geolocataiabases in Section 3 and
presented the confidence area obtained with active measntein Section 4, we use
the active measurements introduced in Section 4 to chealeimdution of geolocation
databases. When comparing geolocation based on active regesis and databases,
several situations may occur. One possibility is when degab and active measure-
ments give the same location for an IP address, i.e. datalgasea location that lies
within the confidence region given by active measuremerits Jituation is not typi-
cal, given the coarse geographic resolution of databasedged/Nhen location estimates
from the databases do not belong to the confidence regiodeabby active measure-
ments, we would tend to doubt the accuracy of databaseg thdreexpecting that the
confidence region suffers from measurements biases, astifidence region is made
from higher bounds on the distance constraints.

Let us now measure the distance between the border of theleané region given
by CBG and the location estimates of the databases. If CBGrigct in its estimation
of the location, then this distance should provide a lowarrigbon the actual geolo-
cation error made by the database. Figure 3 shows the cuweutistribution of the
minimal distance between the location estimates of the Matrdataset (results for
Hexasoft are similar) and the border of the confidence regreen by CBG, with and
without using bandwidth estimation. This minimal distaficgt tells whether the loca-
tion estimates from databases are within the confidencenagi not. If the distance
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Fig. 3. Distance between the database results and the border of the CBG coafidgion (Max-
mind dataset).

is negative on Figure 3, it means that databases are witkircahfidence region. If
the confidence region is small and the location estimateefittiabase lies within the
confidence region, then we expect that it is likely that thialdase estimate is correct.
We observe on Figure 3 that more tH#%6 of the probed IP addresses have a database
location estimate that lies outside the confidence regiod,quite far away from it.
Note that in a few cases the distance on Figure 3 is negattvéagge, meaning that the
confidence region is pretty large.

The large distances shown in Figure 3 suggest that the gaugreesolution of
databases is poor, compared to the confidence region giv€BBy To quantify the rel-
ative resolution of databases compared to the confiden@rgiyen by CBG, we plot
in Figure 4 the ratio of the difference between the CBG egtraad the locations given
by the Maxmind dataset (results for Hexasoft are similavjdedd by the uncertainty in
the CBG estimate (radius of the confidence region). Let ustdetie location given
by CBG by loc.,(IP), the radius of CBG’s confidence region bydius.y,(IP),
and the location given by a databaselb¥,utupase(IP), then the ratio we compute

is | l"c‘“t“ﬁ‘;jfigjg_&";;bg(IP) |. A ratio smaller thari means that the location estimate
given by the database is within the confidence region. Indhge, we would tend to
trust the location estimate given by the database. A ratgetathanl means that the
location estimate given by the database lies outside thigdemrte region. In that case,
it is likely that the geographic resolution of the databadeo coarse to give an accurate
location estimate for the considered IP address. We obserégure 4 that the ratio
is typically far larger thari, meaning that the geographic resolution of the databases
compared to the confidence in the active measurements éssinsapoor, relative to
the confidence region of CBG. For only less tH@86 of the probed IP addresses, the
databases have a good enough geographic resolution to hetkecomparable to the
accuracy of active measurements. Note that those resutietdsuggest that location
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estimates provided by databases are incorrect, but rdthethie geographic resolution
at which databases give mappings from IP blocks to locatoas$oo coarse to provide
accuracy at the level of individual IP addresses.

6 Conclusion

In this paper, we assessed the geographic resolution obcpgan databases. We de-
scribed the typical content of such databases, showingitegido not contain informa-
tion to give confidence in the expected accuracy of theirtlonaestimates. We illus-
trated the relative coarse resolution databases prowdshdwing how large the span of
cities is, and how much the location estimates differ betwtbe considered databases.

We carried out active measurements in order to compare thgrgghic resolution
of databases to a more accurate standard. We quantifieddheaag of active measure-
ments, and tried to improve them by adding bandwidth measemés to reduce the bias
from bottleneck links.

Our comparison of the active measurements and the locasiimates from the
databases demonstrated the coarse geographic resol@itdatadbases location esti-
mates. We showed that not only the distance between theidocastimate of the
databases and the location given by active measuremenésyidarge, but that also
difference between the database location estimates freradtive measurements esti-
mates, divided by the accuracy expected from the active mneaents, is very large.

Our work shows that the geographic resolution of geolocatiatabases is coarse
compared to the one of active measurements. That does nottiregathe location es-
timates given by databases are not good enough. Informaltiout the geographic res-
olution of the databases can be embedded in them, for exdwgpl&ing an estimate
of the city-level span for each record. In general, we do Rpeet that active measure-



ments will be so helpful to improve the geographic resolutibgeolocation databases,
simply because databases work at the level of IP blocks. Menven particular cases
where better accuracy is required for specific IP addresstise measurements have
great potential to provide better location estimates tratalthses.
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