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Abstract. Malaria is a public health problem in Senegal.  Despite the implemen-

tation of prevention and treatment programs, the prevalence rate remains high, 

although there has been a noticeable decrease over the years. 

To further strengthen our efforts in the fight against malaria, we have previously 

developed a prediction system aimed at assessing the presence or absence of 

Anopheles larvae in specific sites. This system, is a crucial component of our 

anti-larval control (ALC) strategy, which involves gathering physico-chemical 

parameters from the site and using them to predict the likelihood of larvae pres-

ence. Given that, our prediction system relies on these physico-chemical param-

eters, ensuring the reliability and quality of the data is paramount. In our previous 

study, although we had access to reliable and high-quality data, we encountered 

an issue with data imbalance. To validate the accuracy of our prediction system, 

it is essential to address this data imbalance. 
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1 Introduction 

In 2021, the World Health Organization (WHO) reported an estimated 247 million 

cases of malaria worldwide, resulting in 619,000 deaths [1]. Africa accounted for about 

95% of all malaria cases and 96% of the associated deaths [2]. Particularly in Senegal, 

there were 536,850 reported cases and 399 deaths in 2021. These numbers represented 

an increase compared to the year 2020 with the 445,313 confirmed cases and 373 deaths 

reported in 2020 [3]. Thus, despite the diligent efforts made through the national ma-

laria control program, malaria is still present in Senegal. 

One unique particularity of malaria control in Senegal is its focus on combating the 

adult stage of the Anopheles. An essential strategy involves area-specific interventions 

targeting the larval development phase, known as Larval Control (LAL). To enhance 

LAL efforts, previous work has aimed to develop a predictive model to determine the 

presence or absence of larvae. The prediction process relies on physico-chemical pa-

rameters from Anopheles breeding sites [4]. 

However, it should be noted, that the quality of predictions from the previous model 

is questionable due to the confusion matrix of the latter. Indeed, the results from the 
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confusion matrix of the prediction model yield four results: True Positive (TP), True 

Negative (TN), False Positive (FP) and False Negative (FN), with respectively TP cor-

responding to the presence of larvae and TN to the absence of larvae. An analysis made 

on the results of the confusion matrix shows that the value of TN is equal to zero (0). 

This value revealed an imbalance in the data source used to set up the prediction model 

[4]. There are various potential solutions to address the data source imbalance. One 

option is to create a new database, which would involve gathering and processing new 

data. However, this approach needs substantial costs. In order to maintain the reliability 

of the results of the prediction model, it is therefore necessary to balance the existing 

data and re-test the model. The efficiency of this prediction model will be a benefit in 

the LAL. 

The remaining sections of this document are organized as follows. Section 2 deals 

with the motivations for choosing the SMOTE algorithm. Afterwards, Section 3 dis-

cusses the different tools, methods used, and implementations made in this research. 

Section 4 presents the outcomes and findings from the implementation and comprehen-

sive discussion of the results. Finally, Section 5 depicts the conclusion presents some 

perspectives and challenges. 

2 Various SMOTE algorithms 

Faced with the need to balance data in order to improve prediction, the use of SMOTE 

seems appropriate. SMOTE (Synthetic Minority Oversampling Technique) appears to 

be a well-suited approach for oversampling minority observations [5]. As data imbal-

ance is a frequent problem in classification and affects the performance of machine 

learning models, a suitable solution should be proposed. 

In the field of medicine, data analysis methods have proved extremely useful in 

healthcare for early diagnosis to provide better medical treatment and thus minimize 

the mortality rate in cases such as breast cancer, diabetes, coronary heart disease, kidney 

disorders, and more. However, a survey of existing models reveals shortcomings in data 

processing analysis and also in learning classification algorithms. This is due to the 

imbalance in the data, leading to unbalanced results. To address these challenges and 

ensure the reliability of predictions, the SMOTE algorithm, more precisely Distance-

based SMOTE (D-SMOTE) and Bi-phasic SMOTE (BP-SMOTE) coupled with learn-

ing algorithms, have enabled Sowjanya A. M. et al. to propose hybrid sampling tech-

niques that enhance prediction accuracy in unbalanced health data [6].  

The existence of several variants of SMOTE allows for its adaptation to various 

types of data or problems. These variants include: classical SMOTE, proposed by 

Chawla et al. [5] as an alternative to random cloning of minority data, which can lead 

to overlearning.  

SMOTE-NC (Nominal Continuous), which is an extension of SMOTE for mixed 

data, i.e., data containing both numerical and categorical variables. It was introduced 

by Chawla et al [7] as an improvement on classical SMOTE, which cannot handle cat-

egorical variables without encoding them in numerical form, giving rise to errors. 
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Therefore, Borderline-SMOTE [8], focuses on minority observations located at the bor-

der between classes since they are more difficult to classify.  

Furthermore, ADASYN (Adaptive Synthetic Sampling) .[9], adapts the number of 

synthetic data to be generated according to the degree of nesting between classes 

whereas SVMSMOTE considers an SVM (Support Vector Machine) to figure out the 

most relevant minority observations to oversample.  

On the other hand Safe-Level-SMOTE [10] defines a safety level for each minority 

observation, based on the number of neighbors in the same class, and favors observa-

tions with a high safety level. In contrast, Cluster-SMOTE, groups minority observa-

tions into clusters, and generates synthetic data within each cluster. In addition to adapt-

ing to different types of data, these different variants also pave the way for new 

SMOTE-based methods. 

The ASN-SMOTE, as proposed by Yi et al. [11], represents a novel approach to 

oversampling unbalanced data. It is based on the classical SMOTE but improving the 

neighbor’s selection and synthetic data generation. Its aim is to reduce noise and im-

prove data quality for the minority class. The main idea is to use the majority class to 

perceive the decision frontier, and adoptively select qualified neighbors for each mi-

nority observation. This reduces noise and improves data quality for the minority class 

[11]. 

Regarding its advantages, the SMOTE algorithm provides several key benefits. It 

improves the performance of classification models despite the presence of imbalances. 

In addition, it prevents overtraining and preserves information. SMOTE generates syn-

thetic samples by combining characteristics of neighbors and reduces classification bias 

that can occur when the model is strongly biased towards the majority class. These 

advantages bring SMOTE a highly suitable algorithm for addressing imbalances in 

preparation for predictive modeling. 

3 Materials and methods 

3.1 Experimental settings 

The implementation of the SMOTE algorithm was carried out using Python. To do this 

we deployed a virtual machine, Windows 7, with 4 GB of RAM, 60 GB of storage and 

4 Intel processors at 2.10 GHz. On this machine, we installed Anaconda 3, with differ-

ent applications: Jupyter Lab and Jupyter Notebook.  

The main steps of the data processing were: import of libraries, import of the initial 

database (unbalanced), removal of non-determinant columns, exploratory analysis for 

descriptive statistics of the data, implementation of the SMOTE algorithm, and verifi-

cation of the balancing of the data. 

 

3.2 Data examination for balancing 

The data under consideration stems from measurements conducted in October 2020 

within the Toubacouta district and its surroundings due to the sympatric presence of 

An. arabiensis, An. gambiae and An. coluzzii species and the observation of contrasting 
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hybridization rates between the latter two. In order to collect these physicochemical 

parameters, an inspection was made at each site, the larvae were collected using either 

the «dipping» or «pipetting» method, depending on the size of the sites, and were sub-

sequently placed in labeled jars denoting the site number.  

For each site, a comprehensive record was made of the presence or absence of Cu-

licidae other than Anopheles, as well as observations regarding vegetation, turbidity, 

and sunlight. Following this, precise measurements of nests dimensions (length, width, 

depth) were taken with a decameter, alongside the assessment of additional factors such 

as their status, turbidity, sunlight exposure, and the presence of vegetation or other mos-

quito larvae.  

Subsequently, the following parameters were then measured with a portable field 

tester (SD Card Real time Datalogger): temperature, amount of dissolved oxygen, salt 

content and pH. The larvae were then sorted in the laboratory and stored in tubes con-

taining 70° ethanol. The dataset encompasses a representation of the physicochemical 

characteristics and the presence or absence of larvae. 

 

Table 1. Presentation of the data collected 

PH Temp Conductivity Saltiness 

Dissolved 

oxygen Turbidity Sunshine Vegetation Status 

7,45 32,5 43,9 0 11 0 0 0 1 
7,68 34,1 227 0 8,7 1 0 1 0 

7,26 30,2 52,6 0 20,2 1 0 0 1 

 

In Table 1, only the physico-chemical characteristics and the presence of larvae are of 

interest. Furthermore, our final data source will retain only the latter [4]. The main rea-

son for the imbalance in the data comes from the fact that out of 4700 record lines are 

composed mostly by the presence of larvae 

3.3 Imbalance concept and balancing algorithm 

Unbalanced data is a common situation when dealing with real data. We can evoke the 

imbalance when we have observations distributed in two (02) classes and the frequen-

cies of these two (02) classes are not in a ratio of 50% each. However, in real data, the 

notion of imbalance is evoked if the ratio is between 10% and 90%, i.e. if the imbalance 

exceeds 10% for the minority class .[12]. 

In case of data imbalance, the need to rebalance the data goes through two (02) meth-

ods: subsampling and oversampling. 

Subsampling consists of removing part of the majority class in order to give more 

importance to minority individuals. Oversampling consists in increasing the number of 

minority individuals so that they have more importance in the modeling. These two 

(02) balancing methods are implemented thanks to the SMOTE algorithm on which we 

have previously exposed. In our particular case, an oversampling will be performed on 

the minority class characterized by the absence of larvae at the status level. This allows 

to densify the population of minority individuals in a more homogeneous way [5]. 
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3.4 SMOTE Implementation 

The data that require balancing were collected in October 2020 by a team from the 

Pasteur Institute of Dakar in Toubacouta, Senegal. These initial data include infor-

mation on the deposit, the physico-chemical characteristics of the deposit and the pres-

ence or not of larvae. For our prediction, we focused on the physico-chemical charac-

teristics and the presence or absence of larvae. It is worth noticing that fixed chemical 

parameters and a couple of physical parameters will be kept as well as the presence or 

absence of larvae. 

Table 2. Retained physico-chemical parameters. 

pH Temperature Conductivity Salinity Dissolved. 

Oxygen 

Turbidity Status 

7.45 32.5 43.9 0 11 0 1 

7.68 34.1 227 0 8.7 1 0 

7.26 30.2 52.6 0 20.2 1 1 
6.87 32.7 25.5 0 5.2 1 1 

7.70 33.6 68.9 0 23.6 1 1 

 

The Table 2 informs about the physico-chemical parameters retained in our predic-

tion. 

Table 3. Database description 

 
pH Temperature Conduc-

tivity 
Salinity Dissolved. 

Oxygen 

Turbidity Status 

count 
4794

.0 
4794.0 4794.0 4794.0 4794.0 4794.0 4794.0 

mean 
7.38

7 
31.3489 

208.60

42 
0.0080 21.4931 0.531915 0.9148 

std 
0.98
86 

2.732198 
271.67

3 
0.0192 8.421062 0.49932 0.2790 

min 
3.63

0 
25.00 15.80 0.0 5.20 0.0 0.0 

25% 
6.98

0 
29.80 58.10 0.0 15.7 0.0 1.0 

50% 
7.36

0 
32.10 112.70 0.0 21.10 1.0 1.0 

75% 
7.79

0 
33.60 255.0 0.010 26.80 1.0 1.0 

max 9.90 34.30 1520.0 0.10 35.70 1.0 1.0 
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In Table 3, we can notice that our database consists of 4794 occurrences, with an 

average value of approximately 0.914894 for the «Status» column. Notably, this col-

umn represents the presence and absence, denoted by 0 and 1, respectively. The average 

value of 0.9148 for this column is indicative of the extent of the data imbalance. 

Table 4. Status options count 

Status value Count 

1 4386 

0 408 

 

Table 4 illustrates valuable insights into the extent of the data imbalance. Specifi-

cally, we observe that there are 4386 occurrences indicating the presence of larvae com-

pared to only 408 for the absence of larvae. To correct this imbalance, we resort to 

oversampling, thanks to the SMOTE algorithm. The objective of the execution of the 

SMOTE algorithm is to achieve parity between the occurrences of the minority class 

and the majority class. 

3.5 Verifying data balance  

The execution of the oversampling with the SMOTE algorithm on our data provided us 

with a result. In order to know whether the balancing was successful, we performed a 

descriptive analysis of our data source. 

Table 5. Database description after SMOTE 

 
pH Temper-

ature 
Conduc-

tivity 
Salinity Dissolved. 

Oxygen 

Turbidity Status 

count 8772 8772.0 8772.0 8772.00 8772.0 8772.0 8772.0 

mean 7.44
2376 

31.48430
2 

199.6569
20 

0.006651 20.517004 0.516986 0.500 

std 0.74

9027 

2.661693 219.1096

51 

0.015416 9.630774 0.499740 0.5000

29 

min 3.63 25.000 15.800 0.000 5.200 0.000 0.000 

25% 7.27 29.800 58.100 0.000 10.500 0.000 0.000 

50% 7.36 32.100 120.500 0.000 21.100 1.000 0.500 

75% 7.79 34.000 255.000 0.010 26.800 1.000 1.000 

max 9.90 34.300 1520.000 0.100 35.700 1.000 1.000 
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As shown in Table 5, the average related to the distribution of the status (regrouping 

the presence or absence of larvae, represented by 0 and 1 is 0.5.  

Our main objective is to confirm the reliability of the prediction system implemented 

in [4]. Indeed, it is mandatory to recalibrate the confusion matrix using the balanced 

data source. 

3.6 Confusion matrix 

The confusion matrix, often referred to as a contingency table, serves as a vital tool for 

assessing the performance of a classification model. In its basic form, it compares the 

actual data for a target variable with the predictions made by the model [13].  

After splitting our balanced database by SMOTE into two for training and prediction, 

we implement the logistic regression algorithm to the data.  

Table 6. Confusion matrix result 

Result Count 
True Positive (TP) 1181 

True Negative (TN) 1100 
False Positive (FP) 1094 

False Negative (FN) 1011 

The confusion matrix result in Table 6 indicates the reliability level of our possible 

prediction tests. 

3.7 ROC curve 

The ROC (Receiver Operating Characteristic) curve is a graphical tool used in the con-

text of classification problems.  It allows us to evaluate the performance of different 

classification models. Its use also includes the AUC (Area Under the Curve), which 

helps to compare different models [14]. 

In our specific case, we have access to the results of the confusion matrices for our 

data before and after applying the SMOTE algorithm for balancing. Table 6 shows the 

results obtained after applying SMOTE, while Table 7 presents the results before 

SMOTE was applied. 

 

Table 7. Confusion matrix result without SMOTE [4] 

Result Count 

True Positive (TP) 2193 

True Negative (TN) 0 

False Positive (FP) 204 

False Negative (FN) 0 

 

To construct the ROC curve, we need to determine the True Positive Rate (TPR) and 

the False Positive Rate (FPR). The respective mathematical representations are as 
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follows: TPR = TP/ (TP + FN) and FPR = FP/ (TN + FP) [14]. After evaluating our 

model, we obtain the classification thresholds as detailed in Table 8. 

Table 8. Threshold’s classification 

Class. Thresh. 0.1 0.2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

t_v_posi 0.01 0.11 0.13 0.02 0.03 0.04 0.05 0.06 0.8 

t_f_posi 0.01 0.03 0.08 0.015 0.25 0.42 0.65 0.08 0.95 
t_v_posi_smote 0.05 0.18 0.42 0.63 0.76 0.87 0.92 0.96 0.99 

t_f_posi_smote 0.01 0.03 0.08 0.15 0.25 0.42 0.65 0.8 0.95 

4 Results and discussion 

4.1 Balanced data 

The results presented in table 5 indicate an average value between the presence and the 

non-presence at 0.5. This leads to an equality of distribution on the presence and non-

presence of larvae. This enables to correct the imbalance that was posed on all our 

collected data, Table 9. 

Table 9. Status options count after balancing 

Status value Count 

1 4386 

0 4386 

4.2 Reliability of the prediction system 

The reliability of the prediction system implemented in [4] is based on the data balance 

on one hand and on the confusion matrix on the other. The interpretation of this matrix 

is based on True Positive (TP) and Positive False (PF). TP presents the accuracy and 

PF the recall on the accuracy of the predictions. Thus, with a high accuracy and a high 

recall we can assume that our data are well managed by the model. 

4.3 Representation of the ROC Curve  

The result of the verification of our classification thresholds grouped in Table 8 gives 

the curve illustrated in Figure 1. 

 



9 

 

Fig. 1. ROC curve 

By observation of Figure 1, we distinguish the curves representing data from our initial 

database and those for the database balanced using SMOTE. The point (0,0) represents 

the threshold where everything is classified as negative, i.e., no false positives (FPR = 

0) and no true positives (TPR = 0). The point (1,1) represents the threshold where eve-

rything is classified as positive, i.e., no true negative (FPR = 1) and no false negative 

(TPR = 1). We can see that the ROC curve in red, representing data balanced by 

SMOTE, evolves gradually for TPR values tending towards 1. In our particular case 

our TPR is 0.95, expressing better logistic regression performance on the balanced da-

tabase. 

4.4 Discussions 

The implementation of a reliable prediction system requires measures to ensure its sus-

tainability and accuracy. The system set up in [4] faced reliability issues, particularly 

in its tendency to predict situations of larval presence. The root of the problem was the 

imbalance in the training data used for the model, it was therefore imperative to have a 

balanced data source in order to retest the prediction system. The first option to have a 

new source of data, was to make a new collection of on the field by taking this time, 

the care to collect on zones of which was sure of the absence of the larvae.  
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This processing enables to have a database with a near balance on the presence or 

non-presence of larvae. This first option could not be implemented, because of various 

constraints associated with scientific fieldwork. A second option was therefore pro-

posed, to balance the existing data. To achieve this, we employed the SMOTE algo-

rithm, utilizing oversampling techniques. This approach promotes building a new data-

base, which in turn facilitates the retesting of our prediction system.  

Based on the results obtained from the ROC curve, we can confidently conclude that 

the use of the SMOTE algorithm to balance our data enhanced the prediction system's 

quality and reliability. At this stage, we can affirm the system’s dependability for pre-

dictive purposes. 

5 Conclusion 

The establishment of a reliable and balanced database for collecting physico-chemical 

parameters from Anopheles breeding sites and determining the presence or not of 

Anopheles larvae, proved to be a complex task. 

The database we have created, used for prediction, is the result of collecting physico-

chemical parameters directly on the deposits. These data have a major particularity jus-

tifying their use: all parameters are correlated by the presence or absence of larvae. This 

point being crucial in the prediction, this database was suitable. However, based on its 

exploitation, the confusion matrix resulting from the execution of the logistic regression 

shows a significant imbalance in the database. This led to inaccuracy in the process of 

learning and predicting data, although the prediction model is good, the predictions are 

incorrect.  

Faced with this challenge, two solutions were possible: the resumption of operations 

to collect physico-chemical parameters with this time the need to take equitably from 

roosts with the presence of larvae and breeding sites without the presence of larvae on 

the one hand and on the other hand to balance the data from our existing database. The 

first option involves huge mission costs coupled with the time required for processing 

in order to have a suitable database, we opted for the second option which is to balance 

the database.  

Therefore, we used the SMOTE algorithm to balance our data. Thanks to the over-

sampling method applied to the data, we were able to obtain after execution of the lo-

gistic regression a correct confusion matrix to re-evaluate our data prediction system.  

This reassessment was made possible thanks to the ROC curve. The results from the 

ROC curve indicate that the SMOTE algorithm significantly improved the accuracy of 

our prediction system. Furthermore, it confirmed that the learning and prediction sys-

tem, based on the crucial parameters and logistic regression as previously reported in 

[4], is functioning correctly.  

We plan conducting comprehensive field tests to further refine the system and effec-

tively relaunch larval control efforts in order to reduce the malaria prevalence rate. 
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