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Abstract—African countries are facing a major public health
problem due to hemogloblinopathies, which is the most common
blood disorder in the world. In sub-Saharan Africa, 80% of the
worldwide affected people (around 700 million) are living with
sickle cell disease. Sickle cell anemia primarily affects children
and teenagers and it unfortunately requires a life-long treatment
from birth. Research reveals that in areas with no clinical follow-
up, over 50% of children with sickle cell disease pass away before
turning five years old. Health professionals assert that, depending
on the patient’s age and disease stage, early diagnosis and routine
follow-up can prevent this scourge. However, standard and hand-
operated diagnosis approaches, such as those used in Senegal and
other sub-Saharan African nations, lack objective solutions and
frequently require laborious decomposition operations that prone
visual assessment errors. One of the most recent applications of
Al is in medical decision-making, aiding doctors in diagnosis and
treatment decisions. While interested in CNN learning model,
ResNets, we propose an “Attendant of Screening for Sickle
Cell Anemia” named (ASSCA) as a part of diagnosis decision-
making. The ASSCA framework is able to accurately detect sickle
cell disease and its development stage with a low false positive
rate based on deep analysis of human blood smears images. In
addition, based on knowledge of medical concerns, ASSCA gives
better ways to measure disease assessment for rapid diagnosis
decisions related to appropriate care. A key processing step is
introduced to tackle classification challenges due to complex cell
shapes, overlapped cells, and image color range. With a suitable
optimizer (SGD-M), ASSCA gives an outstanding mAP measure
of 98.81% with a low false positive rate.

Index Terms—Deep learning, ResNets, Sickle cell anemia,
Classification

I. INTRODUCTION

Diagnosing and determining the staging of sickle cell ane-
mia will help to recognize signs that can facilitate treatment
and thus reduce morbi-mortality in most regions of Africa.

In Africa, in relation to most advanced healthcare facilities,
treatment for Sickle Cell Anemia (SCA) is linked to regular
medication prescribed by the doctor. However, the prescription
is currently based on a subjective decision derived from sickled
cells visual identification and counting operations which are
based solely on the health expert’s decisions. This tedious
work is rated as inconsistent [1] and may lead to errors and
an inappropriate diagnosis for the type of disease or even the
stage of its development. Thus, in light of these limitations,
several works attempt to enhance SCA diagnosis with the help
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of Artificial Intelligence (IA) tools. However, all of them have
focused on improving the identification decision (decision-
making capacity) of sickle cells at the expense of errors in
that decision.

An Al model may decide whether or not a patient has sickle
cell disease, but a model may also go wrong in this decision,
which would be harmful and return to a misdiagnosis. Our
issue will be an incorrect diagnosis decision due to the model’s
unsuitable diagnosis recommendation based on the stage of the
disease. Section IIT will provide a more detailed depiction of
that issue.

Microscopic inspection of blood smear samples from med-
ical images can distinguish blood diseases in different parts
of the human body. Deep learning (“DL”) is an Al approach
that has taken over existing traditional methods with its ability
to process large amounts of data with outstanding levels of
accuracy [2]. ResNets is a variant of convolutional neural
networks. When it comes to classification, ResNets outper-
forms all other DL variants with its ability to extract the
best features [3]. ResNets is able to extract at an acceptable
time the characteristics that best correlate with the target
variable. It also has the scarce ability to deal with degradation
problems when saturation is reached throughout the model
training process. To mitigate poor accuracy concerns in object
detection, ResNets is combined with “YOLO version 5 to
enhance SCA diagnosis by reducing errors in existing model
decisions.

In this paper, we highlight a technical innovation in Al
by joining the ResNets and YOLO architecture as a single
hybrid proposal to accurately detect SCA. Our hybrid network
simultaneously detects inspection points and classifies them
in an accurate and reliable way. Furthermore, we show that a
good combination of DL methods with medical professionals’
knowledge has the potential to reduce costs and enhance
productivity in health facilities, especially those of developing
countries. Our main contributions are:

e We address a comprehensive learning framework for
public health issues related to the diagnosis decision
making on SCA;

o We propose an accurate framework, named ASSCA, that
diagnoses SCA from blood smear images with a low
type 1 error rate, ensuring better patient care and tackling
manual diagnosis in local healthcare settings;



o We propose a new method to diagnose SCA based on the
avoidance of sickling activities in blood [4] using a spe-
cific threshold of sickle cells rate. This new method can
help save lives and improve patient care by automating
the process with high precision;

The rest of this paper is organized as follows. Section II
reviews related works. Section III depicts SCA shortcomings
diagnosis problem and limits that lead to this proposal. The
section IV exhibits our proposed DL-enabled object detection
and classification approach that addresses existing concerns.
Section V provides the experimental results and discussion.
Finally, Section VI concludes our studies.

II. RELATED WORKS

Hajara et al. [5] propose an SCA detection framework based
on AlexNet model. The Author’s proposition first consists
of Red Blood Cell (RBC) extraction based on their region
of interest then, a CNN-based AlexNet model with transfer
learning is used to classify these cells. The framework predicts
cells based on a longitudinal study of patient cell shape with
90% of precision.

The authors in [6] propose a deep CNN model to classify
sickle cells. Their proposal uses data augmentation approaches
such as flipping, and rotating in the prepossessing step. Com-
pared to DL-based models such as Resnet-50, Resnet-101,
Visual Geometry Group (VGG-16, VGG-19), Inspection V3
outperforms with a accuracy of 91% in 0.001 learning rate.

In [7] authors use thresholding techniques to detect sickle
cells. In this paper, morphological erosion and dilation pre-
processing techniques are used to filter images to make their
artifacts more visible. The outcome of this project is to
highlight the gap between different parts of an image to
distinguish normal and abnormal cell shapes. Binary image
pixels are then inverted to keep only the abnormal cells visible.

Work in [8] aims to produce a classifier to identify SCA
using multilayer perceptron (MLP). Based on a pre-processing
step, 13 features are defined from image as the most relevant to
diagnosis SCA. From the experimental result, MLP performs
better than all machine learning algorithms with 98% of
accuracy rate. MLP is one of the best ML algorithms when it
comes to image classification. Can DL algorithms do better?

Using production-based Al tools, we propose an accurate
model with low false alarm rates that deal with noise image
quality, and effectively improve the accuracy of SCA detec-
tion. We refine ResNet-50 architecture as a simple feature
extractor without its classifier component. Then we fine-tune
the network output using YOLOVS classifier layer to detect and
count sickle cells. To the best of our knowledge, this is the
first work that detects SCA and additionally provides insight
into its prescriptions using this innovative Al mechanism. In
contrast to work in literature, we use metrics as mean Average
Precision (mAP) and false positives that are more suitable to
evaluate object detection system performance.

ITI. SHORTCOMINGS OF EXISTING MODELS

Sickle cell anemia is diagnosed by the presence of sickle
cells in the blood. The early detection of SCA could help to
remedy its disadvantage through specific treatment (i.e. insen-
sitive to a specific antibiotic, blood transfusions, traditional
plants to avoid sickling activities [4], analgesics, etc.).

Currently, intelligences are being developed using Al tools
to compensate for errors in the manual diagnosis of SCA in
local health facilities [S]-[8]. An AI model can determine
whether a patient admits sickle cells or not. However, this deci-
sion is not uncontested as the intelligence used may be flawed
in its decision. The decision-making problem can be described
by the fact that intelligence can identify a malformed cell as
not being one or can conversely state with great accuracy that
a properly formed cell is deformed. The second case is more
relevant to our study. Indeed, after SCA diagnostic studies such
as [4] tries to prescribe treatment based on the percentage of
sickle cells observed in a blood smear. The authors attempt
to avoid the sickling activities according to the percentage
of sickle cells in a blood sample over a field-of-view of the
relative area of the smear. Thus, it is clear that a bad decision
coming from Al can lead to erroneous prescriptions and hence
life-threatening.

The motivation of this work is to bring more consistency
with respect to the decisions made regarding the recognition
of sickle cell. Thus, we propose a more efficient intelligence in
terms of precision and especially in terms of error rate in the
decision-making commonly known as false positives (FPR).
This issue is tackled using a hybrid architecture combining
two well-known algorithms ResNets and YOLOvS. YOLO
[9] and ResNets [10]-[12] have proven their effectiveness in
object recognition systems as well as powerful classification
learners, respectively. In addition, delay and accuracy are two
important criteria thanks to which ResNets is broadly approved
in production. The proposed architecture and classification
approach used in this survey are explained in the following
sections.

IV. MATERIALS AND METHODS

This section presents the architecture and data pre-
processing methodologies adopted to improve learning from
images. The proposed model architecture has two components:
a feature extractor based on the ResNet-50 network and a
classifier with YOLO “ObjectDetection” API. Since ResNets
enables better learning, the classification technique we adopt
implements ResNet-50 using Keras and readjust the output
to the YOLO classifier layer for classification purposes. A
detailed architecture is given in section IV-B.

Deep residual networks or ResNets [13] developed in 2016
seek to overcome two main problems of existing machine
learning techniques; a long training time issue and a limited
number of learning levels. Compared to other convolutional
neural network architectures, ResNets performance does not
decrease as the network architecture gets deeper. In addition,
it avoids the vanishing gradient problem which greatly affects
convolutional neural networks. ResNets is able to learn in deep
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Fig. 1. Data-enhancing outcome : a) original image; b) grayscale image; (c) equalized image.

networks and it is shown that the model performs better in
image classification than others CNN models [14]. ResNet-50
is a 50-layer convolutional neural network (48 convolutional
layers, one MaxPool layer, and one average pool layer) that
we use as a model training architecture in this experimental
work. Training the network by using ResNets allows for better
feature extraction on dataset images and thereby reduce the
error rate (FPR) resulting in a disappeared gradient problem.
ResNet has a significantly lower training error and can be
generalized to validation data [13]

You only look once or YOLO [9] is a new approach to
object detection. In its building mechanism, YOLO is not
a classifier, nevertheless, we have re-purposed as such in
our single-class classification problem. YOLO frame object
recognition is a regression problem that spatially distinct
bounding boxes and the object class probabilities directly from
the full images. YOLO divides the image into a K x K grid
where each grid predicts with probability Pr a delimitation
box and confidence scores of these boxes to contain the object
to be detected. A grid cell is responsible for detecting that
object if only if the center of an object falls into that grid. To
compute this center YOLO uses the well-known mathematical
function Intersection over Union (IoU) that computes the
symmetric difference of two sets of measurable geometric
shapes, also known as the disjunctive union between shapes.
The confidence score Score is evaluated using equation (1).

Score = Pr(object) * IoU (1)

With its object detection methods and a customized enu-
meration function, YOLO provides us with a suited solution
for sickle cell detection and counting from images. This has
motivated the development of such a hybrid model. Our hybrid
model that processes using dataset images with specific pre-
processing is described in the next section.

A. Data Pre-processing

Our dataset is aggregated following two years of observation
of sickle cell anemia cases. It was anonymously obtained from
SCA smear specimens at the public hospital’s hematology
departments in Senegal. This dataset consists of samples of
images obtained from sickle cell patients. Dataset consists
of 727 blood smear full images with both normal and sickle

cells. On random dataset images, cells are cropped then labeled
with the help of at least two board-certified medical experts.
The cells are dissociated into two folders; a folder named
“abnormal” that contains 331 sickle cells and a folder with all
other cells except for sickle cells called “normal”. The normal
folder consists of 396 samples that do not reflect sickle cell
anemia according to diagnosticians panel. Using a multiple
experts in the images labeling process help to improve model
learning ability which firstly based on a human identification
decision.

The image processing steps taken before training our model
through the ResNets network are one of the key insights into
our proposal. The pre-processing steps are two-fold: from the
original image, we go for grayscaling, and from the grayscale
image, we end to equalized image using Adaptive histogram
equalized technique (AHET).

AHET is a data augmentation technique that generates more
solid images, as well as all regions of the image. AHET helps
to enhance image contrast by increasing discrepancy between
the image’s relative highs and lows in order to bring out
subtle differences in shade. Indeed, YOLO bounding boxes are
rectangular shape-based regression functions that determine
the bounding boxes which correspond to rectangles highlight-
ing the object in the image. The application of AHET on
images afford enhancement on image details recognition while
training the model. AHET, thereby brings more precision
in YOLO shape recognition process. Since the detection of
sickle cell (malformed cell) is particularly based on the cell
shape (round or sickle form), equalized images learning from
ResNets help to reduce error in both training and the final
decision. The results can be striking, especially for grayscale
images [15].

To sum up, the pre-processing steps involve applying a T’
transformation independently on each pixel of each original
image in our dataset to get a better image. The outcome result
is given in Fig. 1. The whole process is explained as follows.

For each image img with gray-level {i} encoded on N (bits
by pixel) level, the occurrence probability of a pixel with i
level in ¢mg is formulated by equation (2).

Pi(i) =pli=ir) = £ 0< k< L )



Where ny, is the number of occurrences of level i;, n the
total number of pixels in the image, and p; the normalized
histogram on [0, 1].

The T transformation which for each pixel of i value
of the original image associates a new value s, denoted by
s = T'(ix) is formulated by (3). It consists of a final image
representation commonly named equalized histogram.

k
T(ix) = (L—1))_pilij) 3)
§=0
Fig. 1 displays the outcomes of pre-processing images from
the original dataset image to the final equalized image that we
will use as input to train the model.

B. Hybrid Deep Learning with ResNets

After going through the pre-processing step, learning with
the ResNets model is implemented. We design ResNet-50
architecture using the Tensorflow and Keras API. Each image
in the post-preprocessing set is resized into 224x224, the
dataset is split into 80% of training data and 20% for testing.
Fig. 2 provides the network architecture of our hybrid model
along with an example of input pre-processed ‘‘abnormal”
sample for the training phase.

The weights for ResNet-50 are initialized using Stochastics
Gradient Descent (SGD) with standard momentum parame-
ters. The Momentum can provide a big boost to SGD learning
speed even with a little bit of change. It is shown to be
beneficial for datasets whose samples share some features
[16]. However, Momentum is therefore highly dependent on
dataset structure and learning problems. Combined with SGD
(i.e. SGD-M) SGD-M can accelerate training operation and

memory improvements for model fine-tuning [17]. We perform
the training steps in upward learning rates of 0.01, then 0.001
and 0.0001 by regularly minimizing loss parameters with
SGD-M. The SGD-M tuning parameter is set to 0.934. The
output of the training step is then flattened to build a YOLO
classifier layer with a dropout value of 0.5.

In fact, include_top parameter is set to False to allow
performing a YOLO classifier at the top of ResNet-50 archi-
tecture using the source input tensor. The model checkpoints
are recorded for each learning rate using the Keras callback
function. Thus, the performance evaluation is based on average
precision and loss measures by epoch for different learning
rates. The best learning rate is held for evaluation purposes.

C. Performance Evaluation

The evaluation criteria applied to evaluate the effectiveness
of the proposed hybrid model are the (mAP) and the False
Positive Rate (FPR). The model’s ability to accurately identify
sickle cells from an image and its confidence in making
erroneous decisions are reflected by these metrics; i.e. high
mAP and low FPR values. The mAP is selected as it includes
the trade-off between precision and recall. It is also related to
FPR and false negative measures. The equation (4) details the
mathematical expression of these metrics.

TP
Precision = W (4)
FP
FPR= ————
= mprTny

where T'P is the number of true positives, T'N is the number
of true negatives, F'P is the number of false positives.

--Stagel - — — --StageZ-- — — --Stage3-- —
Input — || Z Eﬂ::;: Norim Conv_block Conv_block
(224, 224, 1) - Identity_block (x2) - Identity_block (x3)
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--Staged-- = — --Stage5-- — — -
= | Avg_Pooling2D
Conv_block —_ Conv_block - o
Identity_block (x5) Identity_block (x2) _ + _
Fatten output
— — - with Yolo
Classifier layer
Pre-processed output
images

Fig. 2. Hybrid architecture design that ties ResNet-50 & YOLOVS
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Fig. 3. Model performance outcome : a) Precision curve; b) error curve

V. RESULTS AND DISCUSSION

To observe the model’s ability to accurately identify sickle
cells among the many other cells that make up human blood,
mAP and loss change curves are depicted in Fig. 3. These
values are the best overall recorded mAP and loss values
per epoch with different learning rates. This observation were
performed under 20 epochs.

In Fig. 3 (a), it is worth noting that mAP gradually increases
with the number of epochs. The higher overall mAP of 98.81%
is recorded at the 14*" epoch, and the mAP value remains fairly
stable thereafter. Adversely, Fig. 3 (b) illustrates loss variation
with epoch for the same learning rates. We can observe that
the corresponding loss value linked to the better recorded mAP
is 1.44%. However, the loss reached very low values from the
15" epoch to end at a minimum of 0.31%. This unexpected
drop is inadequate compared to the observations made on the
mAP variation. We are currently unable to give an explanation
for this observation. It may be linked to overfitting from the
training network. However, this trend on the loss function in
Fig. 3 (b) announces the evaluation of the FPR.

The images used in this experimental test-bed were captured
under an optical microscope with granularity per “field”. The
“field” index consists of the second digit of the microscope
ocular. It allows us, from a magnification value of X100 to

determine the observed diameter and then the targeted surface
area of blood spread over a microscope slide. The value of
this surface is required for the prescription and diagnosis of
most cell-based diseases. This surface is associated with the
number of cells in a “field” to give an exact diagnosis of SCA
stage. For example, from local medical experts, determining
100 cells on a “field” helps when looking for the “leukocyte
formula” or, the number of cells in the 200 “field” is used for
bone marrow examination, etc.

From a magnification value of X100, we calculate that the
images in the dataset are captured on around 0.25mm? field-
of-view across the blood smear area. Based on this result, we
compared the diagnostic performance of our results with those
of the authors in [1] in terms of fype I error ratio using a fixed
learning rate of 10~3. The Fig. 4 reports the ROC curves that
compared performance in SCA detection as opposed to work
in [1] for the same patient slide images surface of ~0.25mm?.
In Fig. 4 the x axis represents false positive rates, the y axis
gives the true positive rate that is the proportion of cells that
were correctly detected out of all sickle cells. The surface
value is the same as the one on which our results are observed.

We can observe in Fig. 4 that ASSCA provides better
accurate prediction while classifying SCA from blood smear
slides images than work in [1]. The trade-off between the two
model’s metrics (sensitivity and specificity) are close to the
top-left corner with a better trend for ASSCA as depicted in
Fig. 4. This means that with respect to classification, ASSCA
performs better than the model proposed by Haan et al. [1]
when images are captured in a specific microscopic parameters
of ~0.25mm?. The ASSCA performance results are particularly
due to the data pre-processing step that deals well with typical
YOLO-building mechanisms when processing object detec-
tion. The pre-processing step highlights the characteristics
(shape and borders of the cell) learning ability of the ResNets
network on which the YOLO algorithm bases its detection.

The pre-processing steps influence our testbed performance
with better recognition of malformed cells. Indeed, with
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Fig. 4. Comparative ROC curves between ASSCA and model in [1] on a
same blood smear surface of ~0.25mm?:



thousands of human cells that are overlaid or blended with
other neonate cells, the training process becomes arduous.
In addition, various factors in images tend to overlap or
scramble the edges of target cells, which are key element when
identifying or detecting sickle cells.

Based on the implementation results of our hybrid method,
we recommend the use of ASSCA to improve sensitive health-
care subjects as well as the detection of colorectal cancer
[14], the classification of Lung Nodules [18], or leukocyte
classification and recognition method [19]. The grounds of
these recommendations is related to the works previously
cited. The main focus of these papers is on precise diagnosis
with low FPR and the knowledge of a targeted cell number in
a delimited surface to provide better diagnosis. In addition, we
suggest to the authors in the medical field to adopt ASSCA for
safer diagnosis and the improvement of antisickling activities
prescription which is jointly linked on the abnormal cells
counting ability of proposed model. The proposed model can
also be readjusted to determine the ’leukocyte formula’ with
it ability to determine the number red blood cells or platelets.
In the health field, it additional has the potential to be a part
of an examination process of the bone marrow.

The main limitation of ASSCA remains the threshold value
of the percentage (over a field-of-view of ~0.25mm?) to
diagnostic SCA. A poorly defined value can have a significant
impact on Type 1 and Type 2 error rates. The percentage
threshold has to be at least greater than 0.3% to avoid
misclassification risks. Indeed, a low threshold rate (i.e. less
than 0.3% of abnormal cells in a “field”) could be a bad
diagnosis since it has been shown that children without SCA
admit on average 0.28% abnormal cells [20].

VI. CONCLUSION

In this paper, we aimed to link interdisciplinary academic
researches that converge Al and clinical care to efficiently
diagnosis SCA in its earliest state. This study combines
medical professionals’ knowledge and a production-based Al
system to increase the effectiveness of SCA diagnosis and
potential treatment based on proposals in healthcare [4]. Pre-
vious studies have investigated sickle cell detection to diagnose
anemia. We address the type 1 error which is not emphasized
in sensitive work related to blood diseases in general.

Our work based on a hybrid DL model automates SCA
screening and diagnosis while considerably reducing the error
related to decision-making. It is able to accurately predict SCA
from blood smear images with high overall mAP of 98.81%
and low F'PR compared to literature.

The sudden drop observed in loss variation is not suited to
learning indicators and must be further researched. In addition,
we are aware that poor contrast tends to blur the sharpness
of observations and model learning. We recommend our pre-
processing step and we plan in the forthcoming works to
expand on that point to reflect a standard in image taking
process for better Al-based learning. Thus, answer some of
the main challenges in Al clinical integration, standardization.

The threshold must be at least greater than 0.3% to avoid
the risk of misclassification. This is one of the limitations
of ASSCA. To be able to scientifically dissociate abnormal
cells from regular cells in children’s blood smear slides is a
challenge that we set ourselves as an objective to reach in a
new collaborations with medical experts.
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