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Abstract—Internet Coordinate Systems [CS) have been pro- system to decrease the embedding distortion [7], [8]. Hewnev
posed as a method for estimating delays between hosts withoutwe claim that sacrificing even a small fraction of nodes, is no
direct measurement. However, they can only be accurate when arguable since TIVs are an inherent and natural property of

the triangle inequality holds for Internet delays. Actually Triangle . ;
Inequality Violations (TI1Vs) are frequent and are likely to remain the Internet. Rather than trying to remove them, we consider

a property of the Internet due to routing policies or path inflation. ~ €Xploiting them to mitigate their impact on ICS and improve
In this paper we propose methods to detect TIVs with high overlay routing.

confidence by observing various metrics such as the relative  Since TIVs are inherent to the Internet, it is mandatory to
estimation error on the coordinates. Indeed, the detection of build systems that are TIV-aware [9]. Therefore, it might be

TIVs can be used for mitigating their impact on the ICS itself, . . .
by excluding some disturbing nodes from clusters running their exploited by overlay routing to set up end-to-end forwagdin

own ICS, or more generally by improving their neighbor selection Paths with reduced latencies, or by nodes participating in
mechanism. an ICS to improve their neighbor selection mechanisms. To
Index Terms—Internet delay measurements, Internet Coordi- improve the neighbors detection mechanisms and mitigate th
nate Systems, Performance, Triangle inequality violations. impact of TIVs on ICS, finding the node pairs that form TIV
bases is sufficient [10], [11].
In this paper, we aim at identifying node pairs that are ikel
Internet Coordinate SystemiC§) have been used to predictto be TIV bases. We characterize these pairs using different
the end-to-end network latency for any pair of hosts amongmwetrics such that thdRelative Estimation Error(REE) on
population without extensive measurements. Several@iedi coordinates. One of our findings is that the REE variance of
mechanisms have been proposedy, [1], [2], [3]. Example TIV bases is usually smaller. This can be used to infer TIVs
of applications than can benefit from such knowledge inclugéth some confidence without any additional measurement.
overlay routing networks, peer-to-peer networks, andiegpl Consequently, we aim at clusterizing node pairs followimgjit
tions employing dynamic server selection, etc. REE variances using Gaussian Mixture Modélv(Ms) [12].
These systems embed latency measurements among san@M¥s are one of the most widely used unsupervised clus-
of a node population into a geometric space and assigrtesing methods where clusters are approximated by Gaussian
network coordinate vector (or coordinate in short) in thidistributions, fitted on the provided data. We have alsoiadpl
geometric space to each node, with a view to enable accurate AutoRegressive Moving AveragdRMA [13] model on
and cheap distance (i.e. latency) predictions amongst ainy the sorted REE variances to find a breaking point, because
of nodes in the population. Node’s coordinates are detethinin many practical regression-type we cannot fit one uniform
based on measurements to a set of nodes, called neighborsegression function to the data.
reference points (often referred to as landmarks). The rest of this paper is organized as follows. Sec. Il
Most coordinate systems [1], [2], if not all, assume that thevaluates how TIVs impact the Vivaldi system and introduces
triangle inequality holds for Internet delays. Suppose @&eeh our used metric to detect TIV situations. Sec. Il explored a
a network with 3 node#\, B and C, whered(A, C)is 1 ms, evaluates several strategies to infer TIV bases. Finadly, 8/
d(C, B)is 2 ms, andd(A, B)is 5 ms, with d(X, Y)denoting summarizes our conclusions and discusses future research
the measured delay betweZnandY. The triangle inequality directions.
is violated becauséd(A4, C) + d(C,B) < d(A, B) end ABC
is called aTIV (Triangle Inequality Violation). WhedBC' !I- VIVALDIAND TRIANGLE INEQUALITY VIOLATIONS
is a TIV, AB is always the longest edge (by convention) and Internet coordinate systems [1], [2], [3] embed latency
is referred to as th&lV base In fact, triangle inequalities are measurements into a metric space and associate with each
often violated by Internet delays due to routing policies arode a coordinate in this metric embedding space. When faced
path inflation [4], and are likely to remain a property of thevith TIVs, coordinate systems resolve them by forcing edges
Internet for the forseeable future. It is also known thathsu¢o shrink or to stretch in the embedding space.
TIVs [5], [6] degrade the embedding accuracy of any ICS [1], We used two basic characterizations of TBéverity as
[2], [3]. Some papers consider the removal (or at least tipeoposed in [11]. The first one is threlative severityand is
exclusion) of the Triangle Inequality violator nodes frohet defined byG, = (d(A, B) — (d(A,C) + d(C, B)))/d(A, B).

I. INTRODUCTION



Relative severity is an interesting metric, but it may beuady 50 ‘ ‘ ‘ T TiVbases -
that for small triangles, a high relative severity may not il j NonTIVbases - ]
be that critical. Therefore we also define a second metric
called the absolute severity which is defined asG, =
d(A, B) — (d(A,C)+d(C, B)). In the sequel, we will ignore
the less important TIVs by considering only those satigfyin
G, > 10 ms andG,. > 0.1 [11], and we will omit the “severe”
qualifier. By convention arlV baseis a node pairAB for

Percentage of node pairs
N
(5]

which there exists at least oiie node so thad BC' is a TIV. 51 AN
A non-TIV basds a node pairAB for which there exists no o s a0 o s 00 190 200
C node so thatdBC' is a TIV. AEE in ms

. . Figure 1. Distribution of the P2psim node pairs in functidnA&EE.

A. Vivaldi overview

Vivaldi [2] is an Internet coordinate system based on a 18 ‘ ‘ i
simulation of springs, where the position of the nodes that 16| Non-TIV bases - ]
minimizes the potential energy of the spring also minimizes
the embedding error. In this system, a new node computes
its coordinate after collecting latency information fronfesv
other nodes (its neighbors) only. We choose to focus on
Vivaldi because it has many interesting properties: it iyfu
distributed and requires neither a fixed network infragtme;
nor distinguished nodes. Vivaldi considers a few possible
coordinate spaces that might better capture the underlying
structure of the Internet.g, 2D, 3D or 5D Euclidean spaces, B - REE
spherical coordinates, etc. For the present study, we ¥de a Figure 2. Distribution of the P2psim node pairs in functidrREE.
Euclidean space and each node computes its coordinates by
doing measurements with2 neighbors.

Percentage of node pairs

trend. Indeed, according to the P2psim and Meridian daaset
) more than 70% of TIV bases are underestimated (i.e. they
We used two real data sets to model Internet latencies: #i&ve a negative estimation error). For each delay matrix, we

P2psini data set, which contains the measured RTTs betwegfisterize node pairs into two groups: the TIV bases, and the
1740 Internet DNS servers, and th&léridian” data set, which non-TIV bases. Based on the P2psim data set, figures 1 and 2

contains the measured RTTs betwe60 nodes. Considering show the distributions of node pairs with respect to theilEAE

the P2psim data set (resp. Meridian), we found that 42% (regynd REE. We divide the whole range of AEE (resp. REE) into

83%) of all node pairs are TIV bases. bins equal tol0 ms (resp0.05).

The authors of [11] show that TIVs impact the performance according to figures 1, 2, we can see that a criterion based
of Vivaldi, and consequently, the nodes that are the mas§ the estimation errors (as proposed in [10]) has a serious
involved in TIVs have less stable coordinates. Furthermorgawback: since the overlaping of the two curves is impartan
the estimated RTT of those nodes pairs are a lot less accurgf€each case, it would be difficult to discriminate the TIV

In the present study, we do not focus on the nodes affses. Note that the Meridian data set shows similar results
their coordinates but on the node pairs. We define two bagigh respect to P2psim data set.
metrics: theAbsolute Estimation Erro(AEE) and theRelative Since a detection criterion based on the basic AEE and

Estimation Error (REE). Following these two metrics, for argE parameters cannot give satisfactory results, we take in

B. Impacts of TIVs on Vivaldi

given AB, we compute: account another parameter. Instead of considering thevesla
AEE(AB) = EST(A,B)— RTT(A,B) estimatio_n error qt a fixed_ time, a simple .alterngtive is tq
AEE(AB) observe its evolution. For instance, the variance is a metri
REE(AB) = RIT(AB) that can characterize the evolution of the REE with respect

to time. To implement a TIV basis detection criterion, we
where RTT(X,Y) is the measured RTT between the nodesompute the REE variances of node pairs during the last 100
X andY andEST(X,Y) is the estimated RTT obtained withticks of our simulation. We used the P2psim discrete-event
the coordinates of the node$ andY'. simulator [14], which comes with an implementation of the

Wang etal. in [10] show that it exists a relation between thé&/ivaldi system. Considering the P2psim (resp. Meridiartpada
estimation error and the TIV severity. They observed that ifset, figure 3 (resp. 4) shows the CDF of the REE variances of
node pair is a TIV base, it is probably shrunk in the metrithe TIV bases and the non-TIV bases. The first observation is
space. By comparing the RTTs of our two delay matrices tbat most TIV bases have small REE variances compared to
those obtained with Vivaldii estimated), we found the samenon-TIV bases.



frequently used in system identification and change point

T detection is the ARMA (AutoRegressive Moving Average)
e | model. Let us considey(t) as the time series resulting from

5 the sorted vectoy. The general form of the ARMA model is

v 1 as follows [13]:
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where ¢ is the shift operatorf is a vector to describe the
Figure 4. CDF of the REE variance (Meridian). time series modelH (¢, 6) is a rational functiong(t) is the

white noise with variance, A(q) andC(q) are polynomials,
and n. are model orders. Based on the observations up
imet — 1, the corresponding one-step-ahead prediction of
th can be expressed as follows:

These findings lead to an easy TIV base detection criteriofnff:t
if a node pair has a low REE variance, it is likely to be a TIV
base. Since the non-TIV base curve has a gentle slope on fig%
4, such criterion is expected to give very good results (high "

TPR and low FPR) onpthe Meridgan dataysgt. On the P2(psgi’m §(t1o) = [1 = Al@ly(t) + [C(a) — Ue(t]6) (©)
data set, the results should be less satisfactory. Indeed, wheree(t|0) is the prediction error, i.e¢(t|0) = y(t) —3(t|6).
can see on figure 3 that about 25% of the non-TIV bases haMee model parametet can be calculated by minimizing the
small REE variances. This will probably lead to false pweii norm Jy (9) [13]:

with a detection criterion based on the REE variance. Thé nex

section describes such TIV base detection criteria. é(N) = arg ming Jy(6) (7)

[1l. DETECTINGTIV BASES N
In the light of our observations in section Il, we propose Jn(0) = iZl(t,&e(t\@)) (8)
two methods to detect TIV bases. We consider that each node N~

i.s maiqtaining a ;Iiding window (history) of the REE of ?aCthere arg min means “the minimizing argument of the func-
“?k o ;:SRIEE ne|gdhbor§. Each r][ode tr:len cgn(;r()jgtes \{[arlancgie n”, and((t,0,¢(t|0)) is a scalar-valued function to measure
of suc , and ends up, at each embedding step, W prediction errok(t|f). This way of estimating the model

a variance vectoy Qf N er_1tr|e_s,N being the number of parameted is called the prediction-error identification method
neighbors the node is considering. M)

L : . . ) PEM).
. The b_asm idea behind our detectpn methods is to differe "One important advantage of the ARMA model mentioned
tiate variances of TIV bases from variances of non-TIV base

We aim at ting b i ts of vari Th Foove is its ability to analyze the time series by breakiregrth
€ aim at creating two separate sets of variances. The g homogeneous segments, if there are apparent disgentin

that leads to the m‘”im“”? mean is likely to contain variancgﬁes in the time series. Therefore, it is important to fine th
of TIV bases. Next, we will introduce our proposed memOdﬁme instants when the abrupt changes occur and to estimate

that we turn into tests to suspect a node pair to be a TIV baﬁ’?e different models for the different segments during Wwhic

The.n., we discuss the p_erformance of our tests in term of fal&ee system does not change. The algorithm that is implerdente
positive and true negative rates.

in this study follows the approach presented in [15], [18Kl a
A. Detection by ARMA models is based on the following model description:

In this first approach, our objectlvg is to clugter the vazcemn Bo(t) = Oo(t — 1) + w(t) 9)
of the REE using the change point detection method. The
key idea is to consider a vector of sorted variances as a tinvbere w(t) is zero most of the time, but now and then
series, model such series, and then detect data discdinuiit abruptly changes the system parametés$t). w(t) is
using the model predictions. One of the most suitable modedssumed to be white Gaussian noise with covariance matrix



R; = Elw(t)w” (t)]. For solving this segmentation problema differentiation between two main clusters (TIV variances
a typical Kalman filter algorithm has been given as follows:and non-TIV variances), we could distinguish more than two
A A clusters, say:. This allows the GMM clustering to create more
0(t) =0t —1)+ K(t)e(t) (10) accurate clusters, from which we choose the cluster that is
more likely to contain TIV variances.
- Given the variance vectoy of N entries, clusters are
§(t) = y(t) =" (06t — 1) 11 formed by representing the probability density function of
observed variances as a mixture of gaussian densities. #/e us

o
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~
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<
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|
<>

K(t) = Q(t)y(t) (12) the Expectation Maximization algorithm to assign postgrio
probabilities to each component density with respect tdeac
P(t—1) observation (to each variance value in our situation). &hgs
Qt) = Ryt 0T P — )00 (13)  are then assigned by selecting the component that maximizes

the posteriori probability. We report interested readershe

approach described in [12], and that we used in this work.
P(t = (9T ()P~ 1) (14) More formally, let us consider the variance vectpr=

Ry + 4T ()P(t — 1)u(t) (y1,...,yn) that we would like to cluster. Clusters are rep-

whered(t) is the parameter estimated at timey(t) is the resented by probability distributions, typically a mixéuof
regression vector that contains old values of the obsemnti 9aussian distributions. Hence, a clustéiis represented by a
y(t) is the observation at time, and §(t) is the prediction Mean value of all values in the clusteg; , and the variance of
of the valuey(t) from the observations up to time— 1 and Values in the cluster, say’ .. The density function of cluster
the current model at time— 1. «(t) is the noise source with C' is then:

P(t)=P(t—1)+ Ry —

variance,R, = El[e2(t)]. The gainK (t) determines how the (y—pe)2
current prediction errory(t) — g(t), updates the parameter POIC) = e TXc (15)
estimate. VTN Yo

The algorithm is specified bft1, 2, P(0), (0), y(t) and | W; denote the fraction of clustef; in the entire data
¥(t). R1 is the assumed covariance matrix of the parametg:ét In this way, we haveP(y) — Z{« W;.P(y|C;), the
jumps when they occur. Its default value is the identity nsity function for clusteringl = 0;7:1767% Each ’point

matrix with the (_j|mens_|o.n_ equal to the number of esum_at ay belong to several clusters with different probabtitie

parametersf(0) is the initial value of the parameter, which

is set to zero.P(0) is the initial covariance matrix of the P(y/C)

parameters. Its default is taken to be 10 times the identity P(Cily) = Wi. P(y)

matrix. Several Kalman filters are run in par&_lllel to estmat The Expectation Maximization (EM) algorithm, consists

system parameters, each of them corresponding to a paﬂIlelﬂ] ; - .
: gn in maximizing E(M), as a measure of the quality of

assumption about when the system actually changes. Eac . : )

. X e clusteringM, E(M) being defined as

time the algorithm returns the model parameter changes, we

log the instants such change occur. Recall that we consider _

such time series as series of variances of REE. Hence, when E(M) = Zlog(P(y))

a change occurs at time, we will consider ally(t), t < 7 o ?

as variances of th& EE of TIV bases. Obviously, changesE(M) indicates the probability that the data have been gen-

may be multiple, but to differentiate variances of TIV base@ated by following the distribution model as defined b

from variances of non-TIV bases, a node will consider onije clustering process using the Expectation Maximization

the first change point detected by the model. method consists then in generating an initial model, say
_ ) M = (C1,...,C}), and repeat the assignments of points to
B. Detection by GMM clustering clusters and the computations of the model parameters until

In this section, we adopt a second strategy to detect TtWe method converges to unstable clustering state maxiqizi
bases. Rather than modeling the series of variances, we & probability that the data observed follows the distidou
at clustering the REE variances into classes where vasanceodel M. Basically, the algorithm (re)computeB(y/C;),
in one cluster are close to each other, and clusters are F) and P(C;|y) for each observation from the dataset and
apart. In such a way, we would be able to identify the clustéar each cluster (Gaussian distributioff), then (re)computes
that contains the variance with low mean, and report its new modelM = (Ci,...,Cy) by recomputingW;, pc
elements as variances of the REE of TIV bases. Gaussamd ) . for each clusteC' (following equations 16, 17, 18).
Mixture Models (GMMs) are among the most statisticallyinally it replaces the distributiod/’ by M.
mature methods for clustering, and may be more appropriateSuch process continues untit (M) — E(M')| < €, where
than other clustering techniques such as K-means, edgecialis constant defining the convergence of the algorithm. When
because clusters of variances may have different sizes dne EM method converges, it returns the distributitth of
correlations between them. Although we still need to loak falusters.
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Performance of TIV bases detection techniques.

(TPR) is the proportion of TIV bases that have been rightly
reported as TIVs by the test, and we haVBR = 7rp/Pp.

For the simulation scenarios, we used the P2psim discrete-
event simulator [14], which comes with an implementation
of the Vivaldi system and each node h# neighbors. The
REE for each node pairs is computed based on the coordinates
provided by the last tick of our simulation. We performed
10 simulations and used different detection thresholdedas
on REE, and the Receiver Operating CharacterisROQ
curve obtained for one simulation is presented on figurep 5(a

To select the cluster we suspect to contain variances of Thid 5(b) respectively for the P2Psim and Meridian data sets.

bases, we look for the cluster correspondingrtiong «; <, f;-

C. Detection Results

Since we observed the same trend for all ROC curves only
one ROC curve is depicted on figures 5(a) and 5(b). We
consider different thresholds varying froml to 1 by steps

To characterize the performance of our detection testf,0.05. Each point on the ROC curves determines the TPR
we use the classical false/true positive/negative indisat and the FPR obtained with a given detection threshold. For
Specifically, anegativeis a non-TIV base, which shouldinstance, considering the curve obtained with the detectio
therefore not be reported in the set of suspects that weederithresholds based on REE, different REE values are illustrat
A positiveis a TIV base, which should therefore be suspecterh figure 5. Note that a REE threshold lower tHameans a

by the test.

underestimation of the actual distance, whereas a REEggreat

A false negativeis a TIV base that has been wronglythan0 expresses an overestimation.

classified by the test as negative, and has therefore beekVe experimented withh, = 1 andn. = 1 as model orders
wrongly unsuspected. false positiveis a non-TIV base that of the ARMA modeling detection technique, while we set
has been wrongly suspected by the t@stie positives (resp. £ = 4 as number of mixtures in the GMM clustering tech-
true negativeskre positives (resp. negatives) that have beeque. The reader should note though that we experimented
correctly reported by the test and therefore have beenlyightvith different parameters of our detection methods thatl lea
suspected (resp. unsuspected). The number of false negatie similar or better results. The plot in figure 5 shows the
(resp. false positives, true negatives and true positieggjrted points corresponding to the false positive rates along the x

by the test isTpn (resp.TFp, TN andTTp).

axis and to the true positive rates along the y-axis, with one

We use the notion dialse negative rat€FNR) which is the point per method used to detect TIV bases, for both data sets
proportion of all TIV bases that have been wrongly reporteglith respect to 10 simulations results. By considering ARMA
as non-TIVs by the test, anBNR = 7y /Pp. The number and GMM models we don't need to set any threshold.

of negatives (resp. positives) in the population compgsai
the links between a node and its neighborhoo®js (resp.

Obviously, the closer to the upper left corner of the graph a
point is, the better, since such points correspond to higé tr

Pp). Thefalse positive rat€FPR) is the proportion of all the positive rates (i.e. a high proportion of positives beingonted
non-TIV bases that have been wrongly reported as positive &y such by the test) for low false positive rates (i.e. a small
the test, s&PR = 7rp/Px. Similarly, thetrue positive rate proportion of negatives incorrectly reported as posijives



The first observation on figure 5 is that the REE threshol#sancois Cantin is a Research Fellow of the Belgian Fund for

which give high TPR with low FPR are different for theRes
P2psim and Meridian data sets. The better REE thresholds,
when one considers P2psim data set (resp. Meridian data set)
vary from0 to 0.15 (resp.0.2 to 0.35). In other words, a good [1]
REE threshold depends on the used data set, and thus, it will
be difficult to fix it a priori. [2]

We observe that both detection methods perform very well
for the King dataset (figure 5(a)) comparatively to the ROC[3
curve based on REE detection threshold which is the method]
proposed in [10]. Note that the ARMA model gives better
results than GMM model. Furthemore, the two points that ar[ﬁl]
located at the right of the ROC curve (figure 5(a)) repredsat t
detection of TIV bases based on GMM model. The same treriél
is observed on figure 5(b) where all the detection of TIV bases
based on GMM model are located at the right of the ROQs]
curve. Nevertheless, the ARMA model can be considered to
be excellent in the case of the Meridian data set.

In summary, the detection of TIV bases based on ARMA
model gives good performance with up to 85% of TIV base&!
detected, while suspecting non-TIV bases in rare situation
(less than 2%). The reason that ARMA model outperformgo]
the GMM model is probably due to the fact that the REE
variances don't follow a gaussian distribution.

[10]
IV. CONCLUSION

In this paper, we have observed that TIV bases hal!
usually a small REE variance. Following that, we clusteatize
the REE variance of node pairs using GMMs and ARMA
models. We obtained satisfactory results with up to 85%7]
of TIV bases detected, while suspecting non-TIV bases [i{g]
rare situations. However, these results have been computed
considering simulations of Vivaldi: in practice the RTTs arl(14l
not constant and the detection results could be mitigatqgg]
Moreover, in ICS applying such detection criteria on the sam
set continuously can lead to a degradation of the detection
performance. Indeed, this criterion is based on the assompt
that TIVs are measured in the ICS and that they impact the
ICS behaviour. If we use the result of the detection criterio
to optimize the selection of neighbors to reduce the imp#ct o
TIVs we will modify the behavior of the ICS. Consequently,
the FPR can increase while the TPR decreases at the same
time. To avoid such drawback, one solution is to ignore the
results of detection if most node pairs are considered as TIV
bases.

We believe these TIV bases detection techniques serve as a
first step towards a TIV-aware systems. Indeed, we can turn
TIV detection into a routing advantage [16], knowing that a
TIV means the existence of a shortcut path between the two
nodes linked by the longest edge of the “triangle”.
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