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ABSTRACT

During the last decade, new services networks and dis-
tributed applications have emerged. These systems are flexi-
ble insofar as they can choose their ways of communication
among so much of others. However, this choice of routing is
based on a large number of measurements of times (Round
Time Trip (RTT)) which are sources of overload in the net-
work. Network Coordinate Systems (NCS) allow to reduce
measurements overhead by mitigating direct measurements.

However, NCS encounter inaccuracies with respect to dis-
tance prediction, when the measured distances violate the
principle of the triangular inequality (TIV-Triangle Inequal-
ity Violation).

Firstly, we propose a new metric, called “RPMO”, which
is based on the Ratio of Prediction and the Average Os-
cillations of the estimated distances, to detect the potential
TIVs. The obtained results show that the “RPMO” metric
gives better performance compared to metrics presented in
former work. Secondly, we propose to use the existence of
TIVs to optimize the routing in Overlay Network. To achieve
this goal, we present a new approach that enables to detect
the best shortened paths offered by the existence of potential
TIVs.

Keywords— Network Coordinate Systems, Triangular In-
equality Violation, Overlay Routing

1. INTRODUCTION

Nowadays, Network Coordinate Systems are widely used
in network applications and services on a large scale and
globally distributed applications such as file sharing peerto
peer [1], nearest server selection [2], online games [3] etc.

Indeed, Network Coordinate Systems (NCS) [4, 5, 6, 7] allow
hosts on the network to estimate the time between them with-
out making measurements, and thus reduce resource con-
sumption and particularly the number of measures on de-
mand.

The main idea of NCS is to model the Internet as a geometric
space, and characterize the position of each node in the net-
work by a set of coordinates. Therefore, the latency between
two nodes in the network is thus estimated as the geometric
distance between their coordinates in this geometric space.
Indeed, explicit measures are no longer needed.

Nevertheless, network policies routing [8] can break down
the principle of triangle inequality. These violations arethe
cause of distortions and prediction errors for coordinate sys-
tems [9]. Let’s assume three nodesA, B, andC such that
d(A,B) is 36ms, d(B,C) is 16ms and d(A,C) is 9ms,
whered(XY ) denotes the delay between node X and node
Y. In this case, the principle of triangle inequality is violated
becaused(A,B) > d(A,C) + d(C,B).

In such case, the triangleABC is a TIV (Triangle Inequality
Violation) andAB (the longest side) is aTIV-base. TIV-base
means that it exists a potential shortcut that can be used to
reduce the distance between these two nodes that form this
link considered as TIV-base. Since the principle of triangle
inequality should be respected in any metric space, finding
“good” coordinates in order to obtain an accurate estimation
of delay between each pair of nodes will be impossible. In
the presence of TIVs, node’s coordinates will tend to alter-
nate between sub-estimates and over-estimates the actual dis-
tance, without ever managing to position themselves in the
metric space so perfect [9, 10, 11].

In order to exploit the coordinate systems for various oper-
ations of prediction distances it is mandatory that NCS give
accurate and stable coordinates. Since the presence of TIV
leads to inaccuracies with respect to the prediction delays,
some researchers in this field have proposed TIVs detection
techniques [10, 12] to allow nodes located in the systems to
avoid links that are TIV-bases. In so doing, these nodes en-
hance their accuracy following the distance estimates.

However, the presence of TIVs in the Internet offers an
opportunity that can be exploited to improve routing distri-
bution applications online games, file sharing, or VoIP [3].
These applications can potentially improve their perfor-
mance routing, using the shortcuts provided by TIVs [13].

Firstly, we introduce our TIV detection metric calledRatio
of Average Prediction on the oscillations(“RPMO” ), which
detects TIVs accurately, while solving the shortcomings of
previous works [12, 10].

Secondly, since TIVs are inherent to Internet, based on the
their existence, we propose to optimize overlay network rout-
ing by using theMDGD metric (Metric for Detecting Good
Detours) to detect the best shortcuts offered by TIVs.

The paper is organized as follows. Section 2 describes the
different Network Coordinate Systems proposed in the re-
lated work ; in addition we present the previous metrics



Figure 1. Geometric space model of the Internet.

used for detecting TIVs, i.e. the ratio of prediction [10]
and OREE [12]. In section 3, we present and evaluate our
proposed metric RPMO. In Section 4, we propose a new
approach for optimizing Overlay routing by the use of tri-
angle inequality violation in NCS. Finally, we conclude and
present some research perspectives in Section 5.

2. RELATED WORK

In order to achieve the objectives of optimizing performance
and scalability of network applications, several approaches
for predicting network distances (propagation delay and
transmission round trip “RTT”) based on coordinates have
been proposed [6, 4, 5, 14, 7]. The main idea of such systems
is to model the Internet as a geometric space. Consider the
example shown in Figure 1, where we have four nodes (A,
B, C, D) illustrated in a three-dimensional geometric space
after an embedding from a given network.

Therefore, the distance between two nodes in the network
is predicted as the distance between their coordinates, with-
out making explicit measurements. In other words, if nodeA
knows the coordinates (x, y, z) of nodeD, A will not need
to make an explicit measure to determine the RTT towards
D, instead,A computes the distance between itself and the
nodeD in the coordinate space. The obtained distance repre-
sents the prediction of the RTT betweenA andD. It should
be noted that until a precise location and reasonable for a
node can be obtained with little overhead, much of the cost
of distance measurements by sampling can be eliminated.

From the literature, Network Coordinate Systems can be
splitted in two categories :

– Centralized Coordinate Systems :they involve a central
component (a set of hosts called either Landmarks, or bea-
cons, or Lighthouses) [6], from which other nodes cal-
culate their own coordinates, according to the fixed in-
frastructure of measurements. We can give as examples
GNP[4], NPS[5].

– Distributed Coordinate Systems :these systems general-

ize the role of landmarks in all nodes in the system, or
eliminate the landmarks infrastructure. Decentralized Co-
ordinate Systems can be seen as a peer-to-peer system. For
instance we can citeBBS[14], Vivaldi [7].

2.1. Vivaldi overview

Vivaldi [7] is a decentralized coordinates system in which
each node computes its own coordinates by making measure-
ments with a small number of other nodes called its neigh-
bors that are heterogeneous (half close and half away). Each
time a node takes a measurement with one of his neighbors ;
it compares the estimated delay measured by using their co-
ordinates and modifies its position in space so as to move
toward or away from its neighbor.

If a given nodei wants to update its own coordinates to-
wards a given neighborj it needs a sample. This sample is
formed byRTTij which is the RTT measured betweeni and
j, neighbor’s coordinatesxj , and the confidence errorej [7].
Let assume thatESTij = ‖xj −xi‖ represents the estimated
RTT between nodesi andj based on their coordinates.

Following the algorithm proposed in [7], firstly nodei com-
putes the weightw of its sample. We havew = ei

(ei+ej)
.

Afterwards, it uses this weight to update its local error
ei = ej × w + ei × (1 − w) and then computes a value of
δ = Cc × w (with 0 < Cc < 1). The goal ofδ is to evaluate
the amplitude of the displacement of the node. Finally, node
i updates its coordinates as follows :

xi = xi + δ × (RTTij − ESTij) × u(xi − xj) (1)

whereu(xi − xj) is a unit vector that indicates the direction
of nodei with respect to its replacement. For more details
about equation 1 please refer to [7].

2.2. Metrics for detecting TIV

Previous works have proposed two metrics for detecting TIV.
The first one is called “Ratio of prediction” [10] and the later



“OREE” [12]. The metric OREE is based on the oscillations
of a given node and the relative error estimation, whereas
the ratio of prediction represents the relationship between the
estimated distance and the measured (actual) distance.

The authors of [10] have shown that the sides of the triangle
that have a small ratio of prediction,i.e., the narrowed sides
according to the Euclidean space, tend to cause severe TIVs.
However, the Ratio of prediction presents some issues with
respect to the node’s neighbors update. Indeed, each node be-
longing to the network periodically chooses32 other neigh-
bors at random, it adds to its32 neighbors already available.
The 64 neighbors are sorted according to the value of their
prediction ratio.

If the ratio of prediction of a link is very small, this implies
that the link is probably underestimated due to the existence
of severe TIVs [10]. Subsequently, the node removes from its
list of neighbors, the32 nodes with the smallest ratio of pre-
diction. Quite often, these neighbors are those that are gener-
ally far from this given node.

After having removed these32 neighbors, the given node
keeps as neighbors the remaining32 nodes (the nearest) as
neighbors for the next iteration. This set of neighbors is not
suitable for Vivaldi algorithm according to [7].

The metric OREE involves the variance of the estimated dis-
tances, the distance measured and the mean estimated dis-
tances. The authors of OREE [12] have shown that when
OREE’s value is small the link can be considered as a TIV-
base, and vice versa. This means that the probability that a
link is a TIV-base increases when the value of OREE de-
creases.

The main drawback of OREE is that it uses a huge amount of
information for detecting TIVs. In fact, we should keep
node’s coordinates of previous rounds of measurement.
Therefore, OREE is not scalable in large network such as
Internet. It causes a considerable computing time, leading
poor performance of peer-to-peer hosts that aim to determine
the best path as quickly as possible (e.g. online applications
gaming or VoIP [3]).

Note that, Kawahara etal. in [15] propose to find quality
overlay routes between node pairs based on TIV optimiza-
tion according to the latency and packet loss ratio metrics.It
is worth noticing that they do not propose a mechanism to
detect TIVs.

3. TIV’S DETECTION BASED ON RPMO METRIC

To overcome the limitation of previous works [12, 10], we
propose in this section a new metric that allows us to take
into account the ratio of prediction as well node’s oscillations
in the network.

3.1. RPMO (Ratio of Prediction on Average Oscillations)

Our goal is to find a metric that allows us to detect TIVs accu-
rately without altering the heterogeneous selection of neigh-
bors according to Vivaldi, and using less computation over-

head. Our proposed metric, called RPMO, takes into account
three parameters (the oscillations, the estimated distance and
the actual distance) in order to detect if a link can be consid-
ered as a potential TIV-base.

RPMO =
Estimated distance

RTT
×

1

Average oscillations
(2)

By definition, a tick represents a round where a given node
update its own coordinates once. An oscillation is the differ-
ence of estimated distances of two successive ticks.

For instance, let assume thatd1 is the estimated distance of
AB during the first tick (tick 1),d2 is the estimated distance
of AB during the second tick (tick 2), andd3 is the estimated
distance ofAB during the third tick (tick 3). Therefore, the
average oscillations between these three rounds can be com-
puted as follows :
Average oscillations = (|d1−d2|+|d2−d3|)

2

Therefore, the RPMO value is obtained by

RPMO =
dn

RTT
×

(n − 1)
n∑

i=1

|di − di+1|

(3)

3.2. Experimental setup

To evaluate the RPMO metric, we used theP2Psimdiscrete-
event simulator [16] which provides an implementation of
Vivaldi. During our simulations, each Vivaldi node has32
neighbors and the results are obtained for a 9-dimensional
Euclidean space. The constantCc is set at0.25 as recom-
mended in [7].

In order to evaluate the RPMO metric, we used three matrices
delays as datasets : P2Psim King dataset (1740 nodes) [16],
Meridian dataset (2500 nodes) [17] and the PlanetLab dataset
(180 nodes) [18].

King and Meridian dataset are obtained following the King
measurement technique [19] which is similar to ping in the
sense that it estimates the latency between arbitrary end
nodes using recursive DNS queries. The third matrix, which
we call PlanetLab dataset, is a matrix delay constructed
by performing ping measurements between 180 PlanetLab
nodes [18] distributed around the world.

To study the characteristics of TIV, two criteria have been
defined to indicate the severity of TIV : theabsolute severity
and therelative severity.

The absolute severity is computed as follows :

Ga = d(A,C) − (d(A,B) + d(B,C)) (4)

The relative severity is obtained by

Gr =
d(A,C) − (d(A,B) + d(B,C))

d(A,B)
(5)

These criteria reflect the potential gain that can be achieved
by detecting the existing TIVs in the network. A gain equals



to Ga = 10ms illustrates that instead of going through the
direct path fromA to B, going through the path via nodeC
allows us to gain10ms.

However, a largeGa andGr do not show only severe viola-
tions, but also a possible gain. In our work, we are interested
in TIVs that meet both criteria, namelyGa > 10ms and
Gr > 0.1. Indeed, TIVs offering shortcuts that allow a gain
less than10ms are not very interesting.

3.3. Evaluation and Results

To study the performance of these different TIV detection
metrics (RPMO, Prediction Ratio, and OREE), we take into
account a comparison of their Receiver Operating Character-
istic (ROC) curves. Therefore, we use the classical false/true
positive/negative indicators. Atrue positive (TPR - True
Positive Rate) is a TIV-base, which should therefore be sus-
pected by the test. Afalse positive(FPR - False Positive
Rate) is a non TIV-base that has been wrongly suspected by
the test.

Figure 2 illustrates ROC curves obtained following differ-
ent TIV detection metrics such as Ratio Prediction, OREE,
and RPMO by considering the King dataset. It should be
noted that theRatio-Predas depicted in Figure 2 refers to the
“Ratio of Prediction” metric. Each point on the ROC curves
(Figure 2) determines the TPR along the y-axis and the FPR
along the x-axis obtained with a given detection threshold.
During our simulations, we take different threshold values
that range from0.5 to 9 by step of0.5. It should be noted
that for a ROC curve, more the curve is near to the top left
the corner of the graph, better is the detection.

The value0.3 labelled in Figure 2 represents a given thresh-
old value that gives better results among the different thresh-
old values (0.5 to 9) that we used during our simulations. For
instance, according to RPMO metric in Figure 2, a percent-
age detection of59% of TIV-base with17% of FPR corre-
sponds to a given threshold value fixed to0.3. This threshold
value gives a better tradeoff.

In fact, the RPMO and Ratio-Pred metric have the same
trend. For FPR smaller than0.2, the RPMO metric outper-
forms the Ratio-Pred metric. Nevertheless, OREE is less
efficient with respect to both metrics RPMO and Ratio-Pred.

Figure 3 shows the ROC curves obtained following Merid-
ian dataset. The general trend one can observed, compared to
Figure 2, is the fact that we have higher TPR detection with
respect to same FPR (eg., 11%). According to RPMO metric,
the threshold value that gives high TPR (88%) with low FPR
(11%) is 0.3 (Figure 3).

The main reason is due to the fact that we have more links
that are TIV-bases in Meridian dataset with respect to King
and PlanetLab datasets. Following our three datasets, the
computed values of links that are TIV-bases are estimated
to 23%, 42%, and 9% for King, Meridian, and PlanetLab
datasets respectively. We recall that a TIV-base is a link
where it is possible to find a shortcut in the overall system.

Figure 4 also illustrates the ROC curves according to Planet-
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Figure 2. King dataset : Comparison between RPMO, Pre-
diction Ratio and OREE metrics.
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Figure 3. Meridian dataset : Comparison between RPMO,
Prediction Ratio and OREE metrics.

Lab dataset with respect to our three studied metrics.

Following the PlanetLab dataset, the best threshold value
with respect to RPMO metric is0.65 with a TPR and a FPR
equals to55% and22% respectively.

As summary, based on Figure 2 we remark that for a TPR
values up to60%, the RPMO metric is better compared to
OREE and the ratio of prediction ; on the other hand for TPR
values upper than60% , the ratio of prediction becomes a
little bit better than RPMO with a FPR upper than 30%. Fol-
lowing the Meridian dataset as illustrated on Figure 3, the
gap is reduced between the ratio of prediction and RPMO.
The same trend is also observed according to to PlanetLab
dataset (Figure 4).

It appears clearly that our TIV detection metric, called
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Figure 4. PlanetLab dataset : Comparison between RPMO,
Prediction Ratio and OREE metrics.

RPMO, is more efficient compared to OREE metric by con-
sidering all datasets (see Figure 2, Figure 3 and Figure 4). It
should be noted that with respect to the ratio of prediction
metric the gap is reduced, and roughly we observe the same
trend.

Nevertheless, the ratio of prediction presents several draw-
backs according to the selection mechanism of node’s neigh-
bors. The prediction ratio tends to select only nearest neigh-
bors that is not suitable for Vivaldi algorithm [7, 6]. We ar-
gue that the metric RPMO is most suitable for detection TIV
when we use a distributed coordinate system like Vivaldi.

4. OPTIMIZATION OF ROUTING IN THE
OVERLAY NETWORK THROUGH TIVS

DETECTION

As TIVs are inherent to Internet, they represent an opportu-
nity that can be exploited for routing in overlay networks. In
fact, multimedia, peer-to-peer file sharing, online games,dis-
tribution applications, or VoIP [3] require quality of service
guarantees in term of delay. Therefore, these applicationscan
potentially improve their performance by exploiting a TIV-
based routing approach.

By definition, we recall that if the sideAB of a “bad triangle”
ABC (triangle where the triangle inequality is not respected)
is a TIV-base, it exists a shortcut, for instance via nodeC, to
get towardsB from A instead of using the direct path (AB).
In such case, applications can use the shortcut to gain more
time. Our goal is to detect for each link TIV-base, for instance
AB, the bestCi points that allow to gain more time fromA
towardsB (i.e., d(A,Ci) + d(Ci, B) < d(A,B)).

4.1. Clustering approach

Clustering is a technique used to group elements with similar
characteristics. Therefore, the idea is for each link TIV-base
(eg., AB), to cluster potential nodes from a given diameter
that can be considered as shortcuts with respect to the link
TIV-base. In so doing, we reduce the number of shortcuts that
will be evaluated in order to find the best one. As well, we can
remove those shortcuts that are not clustered (outliers) in the
set of shortcuts where we should seek good shortcuts.

To achieve this clustering, we used the “QT Clustering” al-
gorithm [20]. This algorithm has been initially proposed by
Heyer etal. for genetic sequence clustering. It is based on the
unique constraint of the cluster diameter, as a user-defined
parameter. The cluster diameter represents the maximal dis-
tance existing among any two members of the cluster.

The main idea behind this clustering algorithm is to find the
best shortcuts as well the shortcuts that are able to give the
same gain of time. Indeed, these shortcuts should share the
same cluster. We hope that these best shortcuts will be given
by shortcuts that are not clustered (outliers) by the use of
QT Clustering algorithm.

For our simulations, we choose a diameter of30ms for clus-
tering the potential “good detour” (shortcut) obtained with
respect to different links that are TIV-base. The result is
shown in Figure 5.
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Figure 5. King dataset : Proportion of outliers (shortcuts)
that represent the best shortcuts for a given TIV-base.

Figure 5 shows the percentage of shortcuts that are among
the best shortcuts following a set of shortcuts obtained
with respect to a given TIV-base. Note that, here the con-
sidered shortcuts are those that are not clustered by the
QT Clustering algorithm. The y-axis represents the number
of TIV-base considered and the x-axis represents the per-
centage of shortcuts that are among the best shortcuts. It is
worth noticing that the best shortcuts are those that enable
to gain more time with respect to a given link considered as



TIV-base.

In Figure 5 we remark that the percentage of outliers that are
among the best shortcuts varies between5 and45% with re-
spect to all shortcuts for a given TIV-base. Note that a given
box (Figure 5) can be seen as a bin where all TIV-bases give
the possibility to find the same percentage of shortcuts that
are among the best shortcuts. For instance, we can see that
less than10 TIV-bases have35% of their shortcuts, consid-
ered as outliers, that are among the best shortcuts for each
fixed TIV-base. Here, we recall that the considered shortcuts
are those that do not belong to any cluster after having exe-
cuted the QTclustering algorithm.

The obtained results, by considering the shortcuts that are
characterized as outliers, do not give high detection of best
shortcuts.

Since we can find the center of each cluster, calledCluster
Head (CH), we would like to seek if a cluster head can be
considered as the best shortcut according to all other clus-
ter heads that own the remaining clusters. In so doing, we
should rank the different cluster head following the gain that
they can offer as shortcut. The first one, after their ranking, is
considered as the best cluster head. By definition, the “Best
Cluster” is the one that is owned by the best cluster head. Put
simply, we hope that all shortcuts that belong to this cluster
offer a good shortcut.

With the QTClustering algorithm, each cluster has a cluster
head that represents the center of the cluster. For a given
TIV-base (eg., (AB)), we rank the different cluster heads
with respect to the amount of time that they can offer. In
other words we sort the differentCHi following their gain
1 ≤ i ≤ number of cluster. Furthermore, we consider the
members of the best cluster and seek their percentage among
the best shortcuts that exist for this given TIV-base.
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Figure 6. King dataset : Proportion of shortcuts that repre-
sent the best shortcuts following the “Best Cluster”.

The obtained results are shown on Figure 6. The y-axis repre-
sents the number of TIV-base considered and the x-axis rep-

resents the percentage of shortcuts that are among the best
shortcuts with respect to the Best Cluster. This second ap-
proach, gives the same trend i.e. the percentage of shortcuts
which are located in the Best Cluster and are considered as
best shortcuts varies between5 and45%.

Based on the results illustrated in Figure 5 and Figure 6, we
can conclude that the clustering approach does not allow a
good detection of best shortcuts.

4.2. MDGD (Metric for Detecting Good Detours) ap-
proach

Since the previous method (clustering) does not help to find
the best shortcuts, we focus on a new approach. The goal
is to find a metric that enables to say whether any potential
shortcut is part of the best shortcut (i.e, a shortcut with a gain
of time upper than10ms).

Therefore, we investigate the possible relation between the
distanceD′ which is equal tod(AB) − (d(AC) + d(CB)),
whered(AB) represents the RTT betweenA andB. Note
that D′ is obtained based on actual distance (RTT delay).
The pseudo gainfor a triangleABC represents the dif-
ference between the RTT distance (d(AB)) and the sum
of estimated distances of linksAC and CB, namely :
d(AB) − (Estimate(AC) + Estimate(CB)).

We put the triangles in bin of 10ms based on their pseudo
gain. In each bin, we calculate the minimum, the median, and
the maximum distance of the distanceD′ of triangles present
in the bin. We illustrate these three metrics in Figure 7, where
on the x-axis we have the pseudo gain in milli second (ms)
and on the y-axis the severity of the TIVs . The curve of the
median distanceD′ of triangles shows that more and more
that the pseudo gain increases, we are dealing with triangles
TIV-bases (i.e a triangle that violates the principle of trian-
gle inequality), which increasingly are becoming more se-
vere (offering gains increasingly large).

It is worth noticing the negative values along the y-axis
means that the triangle is not a TIV. In so doing, when we
consider the minimum distance ofD′, we can see that all
triangles do not violate the principle of triangle inequality
violation.

Furthermore, we consider these metrics in order to figure out
our MDGD approach :

– The relative estimation error (Er) :
d(AB) / Estimate(AB)

– The absolute estimation error (Ea) :
d(AB) − Estimate(AB)

– Pseudo gain (PG) :
d(AB) − (Estimate(AC) + Estimate(CB))

The pseudo gain can help us to find severe links that are TIV-
base. Based on the metricsEr, Ea, andPG we propose the
MDGD metric that allows to find the best shortcuts (gain up-
per than10ms). The MDGD metric is described as follows :

MDGD =
(Er × Ea)

PG
(6)
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4.3. Evaluation of MDGD approach

To study the effectiveness of this metric, our goal is to find
the threshold value that allows to find the maximum number
of “good shortcuts”. In such case, we rely on the TPR (True
Positive Rate) and the FPR (False Positive Rate) according
to each threshold value.

The TPR represents the percentage of shortcuts that are de-
tected as well provide a gain of time upper than 10ms. The
FPR represents the percentage of shortcuts that are wrongly
detected as giving a shortcut upper than10ms. Figure 8 il-
lustrates the obtained results.
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Figure 8. King dataset :ROC curve of the MDGD metric.

It should be noted that for a ROC curve, more the curve is
near to the top left the corner of the graph, better is the detec-
tion. Based on Figure 8 we can notice that these following

thresholds (1.5, 2, 2.5, 3) exhibit this propriety.

To determine the best threshold that give us the best short-
cuts with good accuracy, we compute the accuracy of the fol-
lowing thresholds1.5, 2, 2.5, 3. By definition, the accuracy
(ACC) (Table 1) represents the veracity of the classification
and it is estimated as follows :

ACC =
T P + T N

P + N
(7)

whereT P andT N represents the number of true positive
and true negative respectively. It is worth noticing thatP and
N represents the number of positive and negative respec-
tively. Therefore,P expresses the total number of detours
that give a gain upper than10ms. In contrast,N represents
the total number of detour that give a gain lower than10ms.

Threshold TPR FPR Accuracy (ACC)
1.5 0.57 0.04 0.68
2 0.73 0.13 0.77

2.5 0.83 0.26 0.81
3 0.88 0.38 0.80

Table 1. Evaluation of MDGD metric

Table 1 shows that a threshold value equals to2.5 gives83%
of true positive whereas we have26% of false positive. The
threshold value equals to2.5 gives the best accuracy.

It should be noted that it is very difficult to detect the best
shortcuts with the use of clustering approach. The fact that
potential shortcuts are clustered or are outliers, does not
justify that they share the same characteristic. Nevertheless,
with our MDGD approach, we could find the good nodes
that offer shortcuts with a gain of time upper than 10ms, and
with an accuracy of81% (Table 1).

5. CONCLUSION

In this paper, we proposed a new metric called RPMO that
enables Network Coordinate Systems to avoid the existence
of TIV. We have shown than the RPMO outperforms OREE
metric and presents the same trend with respect to the Pre-
diction Ratio metric.

Although the TIVs are harmful to Network Coordinate Sys-
tems, they present opportunities to improve routing in over-
lay networks. In such case, the existence of TIV can lead to
overlay networks that are TIV-aware. We can reduce conse-
quently the delay between nodes by using the shortcut that
TIVs can offer.

Therefore, we propose a metric called MDGD, to detect the
best shortcuts of any triangleABC that violate the princi-
ple of triangle inequality. The obtained results obtained show
that with a threshold value equal to2.5, MDGD, has a detec-
tion accuracy of 81%.

This result present a nice opportunity for peer-to-peer ap-
plications, online games, distributed applications, and VoIP



that require quality of service guarantees in terms of delayto
maintain a certain level of performance.

Note that it is difficult to find a same RPMO’s threshold value
that can be applied in all studied datasets. As future work, we
plan to find a metric that can enable to use a same threshold
for all the used datasets. We plan also to investigate other
clustering algorithms.
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