
Constraints-Based Response Time for Efficient QoS in Web Services Composition

Bassirou Gueye*, Ibrahima Niang*, Bamba Gueye*, Mohamed Ould Deye*, Yahya Slimani**
* Université Cheikh Anta Diop de Dakar, Senegal

bassirou.gueye@ucad.edu.sn, iniang@ucad.sn, bamba.gueye@ucad.edu.sn, mohamed.ouldeye@ucad.edu.sn
∗∗ Université de Tunis, Tunisia

yahya.slimani@fst.rnu.tn

Abstract—Web Services Composition (WSC) is a paradigm
for enabling application integration within and across organi-
zational boundaries. Nowadays, the Quality of Service (QoS)
that WSC should offer becomes a priority for service providers
and an exigence for customers. Therefore, the response time
of a web services composition is a crucial problem.

However, previous works proposed only analytical formulas
with respect to response times of few BPEL constructors. They
do not provide any mechanisms or tool in order to analyze and
verify the time constraints.

In this paper, we propose a Framework called QoS4WSC
that is able to evaluate constraints-based response time in WSC.
In order to provide a model for estimating the effective response
time of a service composition, we use a parsing file composition
technique. Since elementary web services is based on a best
effort approach, we propose a new architecture which takes into
account the response time of a given service. Our architecture
is composed by two components. The first one pre-determines
the response time of elementary web services and the second
one verifies the QoS constraints of WSC.

Keywords-Web Services Composition; Quality of Service;
Response Time; BPEL; Parser;

I. INTRODUCTION

The main challenges of Web Services Composition
(WSC) in environment like Internet are to ensure high qual-
ity execution according to response time. They do not exist
tools even fewer models that allow designers to evaluate the
efficiency of the proposed QoS. There is a growing interest
for QoS verification techniques which enable designers to
test and improve WSC time constraints.

In fact, web services are emerging and promising tech-
nologies for development, deployment and integration in
Internet applications. A major advantage of web services
over traditional middleware (CORBA, DCOM and XML-
RPC) is the contribution of services interoperability on the
Internet.

Firstly, Web services which are based on XML provide an
infrastructure for describing web services. In such case, we
use the Web Services Description Language (WSDL) [1].

Secondly, after the description of the web services, we can
use the Universal Description, Discovery and Integration [2]
in order to publish the elementary web service that has been
just created. After the description and the publishing phase,
we can invoke the published services. Indeed, we use the
Simple Object Access Protocol SOAP [3].

Web services are designed to promote SOA (Service
Oriented Architecture) [4], integrating highly distributed
complex heterogeneous systems, that can cooperate with-
out resorting to a specific and costly integration. It exists
different web-based applications that can perform specific
tasks.

Nevertheless, with respect to few applications, it is nec-
essary to combine a set of basic web services in order to
create a composite web services. Therefore, we built new
services that enable to provide more complex requirements.
This new composite web service can be viewed as a single
web service from the point of view of the customer.

Although it exists few works around service compositions,
like the standard BPEL4WS [5] (Business Process and Exe-
cution Language For Web Services), the management of QoS
in service compositions needs new solutions that are either
flexible, or reusable, and thus can provide more abstraction.

The characteristics of QoS in web services should respect
the agreement between the service provider and the user.
This agreement is defined in a SLA (Service Level Agree-
ment) [6], [7] which defines the supply and the demand the
of these two entities. The specifications of this document
should be verified during the execution of the web service
composition through a monitoring mechanism.

The QoS in web service can be monitored by the use
of different metrics such as response time, availability,
reliability, cost, etc. It is worth noticing that the response
time is the most important metric with respect to WSC.
An efficient management of the response time induces the
availability at any time of the WSC. Indeed, the invocation of
a web service can be triggered anywhere on the Internet and
the response should be given in a short time interval. In such
case, this implies that the service is available. Therefore,
in order to take into account the QoS, it is mandatory to
develop new tools for its management.

In this paper, we propose QoS4WSC (Quality of Service
For Web Service Composition) framework that enables to
reduce the needed amount of time to get a response during
the invocation of a web service composite. Note that, our
model fully covers the last version of WS-BPEL 2.0 which
is adopted as OASIS Standard. QoS4WSC allows us to pre-
determine the response time of elementary web services as
well verifies the fixed constraints of a WSC.

The rest of the paper is organized as follows. In section II,
we present previous works on WSC. Section III illustrates
our QoS4WSC framework that enables to evaluate QoS con-
straints . The section IV describes the different constructors
used by QoS4WSC tool for estimating and verifying the
response time of a web service composition. In section V,
we validate and evaluate our proposition with respect to
previous works. Finally, Section VI concludes this work and
investigates some future works.

II. RELATED WORK

Web services are an attracting area that interest many
researchers and industrial organizations. So, the authors of
[8] propose different algorithms in order to aggregate QoS
properties for some standardized workflow patterns of web
service compositions. These properties include upper and
lower bounds of execution time and cost, as well throughput
and uptime probability.

Rud et al. in [9], have proposed analytical formulas in
order to take into account the response time of various BPEL
constructors. To achieve these objectives, they use mathe-
matical models by adopting a formalism ratings based on
different assumptions. A good overview of these approaches
is given in [10].

Haddad et al. in [11] have proposed an extension of web
service composite model presented by Menasce [12]. Indeed
in [12] a composite web service is considered as a set of
tasks running in parallel. The authors of [11] argue that the
model described by Menasce is acceptable only if all web
services participating in the composition can be executed
independently. Note that, this assumption is not generally
true.

Therefore, with respect to Menasce’s work [12], Haddad
et al. propose analytical formulas for the response time
of the following constructors: <sequence>, <switch> and
<flow>. It is worth noticing that this paper [11] do not
propose a model for WSC with respect to response time.

Haddad et al. in [13] improve their work already done in
[11]. To overcome the shortcomings noticed in [11], Haddad
et al. propose new assumptions such as the number of basic
web services invoked can be variable, as well the response
time of web services follow exponential and heavy-tailed
model [13]. The choice of these mathematical models is
motivated by the fact that the authors of [14] have shown
that the response time of basic services can be modeled by
such a distribution.

III. QOS4WSC: CONSTRAINT-BASED RESPONSE TIME
FOR WSC

A. Background on BPEL constructors

The BPEL process is formed by constructors (simple
or structured), linked by different workflow. Based on a
survey of BPEL 2.0 constructors specification, we describe
some of them, which are called “key constructors”. It is

worth noticing that a “simple” constructor should be use
itself, whereas a “structured” constructor can call other
constructors that can be structured or simple.

For instance among “key constructors” we can cite :
<receive>, <invoke>, <reply>, <wait>, <onAlarm> and
<repeatEvery>. In fact, these key constructors enable to
define a waiting time and/or processing time during the
execution of an elementary service or a WSC.

The following constructors are defined as struc-
tured : <flow>, <sequence>, <scope>, <If> with
its sub-elements <elseif> and <else>, <repeatUntil>,
<while>, <forEach>, <pick> with its sub-elements
<onMessage> and <onAlarm>, <eventHandlers> with its
sub-elements <onEvent> and <onAlarm> and the con-
structor <repeatEvery> which is optional.

B. Overview of the QoS4WSC architecture

Since previous works have proposed, for few BPEL con-
structors [5], analytical formulas in order to take into account
the response time, we propose here a new framework that
enables to estimate the response time as well to reduce it
according to WSC. Nevertheless, offering a short execution
time for WSC is not simple.

Indeed, elementary web services, as described by WSDL,
are conceptually limited to relatively simple features that are
reported as a collection of operations. Moreover, existing
public directories have not yet integrated this response time
criterion in the representation of the services that they do
provide. In such case, most basic web services do not
explicitly expose their QoS.

Following this lack of QoS, it is mandatory to built mod-
ules that provide a preliminary indication of the response
time for basic services. Therefore, the time that one can
wait for a given WSC is known in advance. Our proposed
QoS4WSC middleware is illustrated in Figure 1 and it is
formed by two main modules. The goal of the first module,
called “Module 1” (Figure 1), is to estimate the response
time of web services. The second one, called “Module 2”
(Figure 1) verifies whether the QoS constraints specified, for
instance in a given SLA, are achieved.

The different steps, (1, . . . , 8), as labelled in Figure 1
enable to estimate the response time of an elementary web
services. During each step we have the following tasks: (1)
the provider (eg., engineer in Figure 1) of the WSC connects
to a directory in order to seek the potential services that can
participate in a composition; once a desired service is found,
he retrieves the address of the WSDL interface file that owns
this service. It should be noted that the web service will be
invoked from this address. Afterwards, during the step 2, the
provider gives the URL of the WSDL file to the Module 1.

Following that, the module 1 (Figure 1) estimates the
response time of the selected web service. The goal of this
processing is to generate automatically a set of class called
“servicename”, “servicenameLocator”, “servicenameSoap”,

Figure 1. QoS4WSC middleware.

“servicenameSoapProxy” and “servicenameSoapStub” from
the URL of the WSDL file obtained previously. These five
classes are used in order to estimate the response time of a
given elementary web service.

In fact, a main class will be created by considering the
previous five classes generated before. In order to obtain
optimal results of response time, we submit multiple requests
to the server that hosts the web service. Therefore, for each
request reqi, we obtain a response time Ti. The average
response time of a web service wsi, 1 < i < k, is obtained

as follows : T [wsi] =
k∑

i=1

(
Ti

reqi
)

It is worth noticing that, the estimated response time
for each web service is saved at the local database of the
QoS4WSC middleware (Figure 1). In such case, this value
can be reused if the web service is re-invoked shortly.

Afterwards, during step 5, the provider of the WSC should
rank the different web services following their precedence
and then sends this new WSC to the verification module
(Module 2 in Figure 1) in order to verify if the constraints
in term of response time is respected. In order to verify, if
the time constraints are respected, we consider the parsing
file composition technique (step 6) described in more details
in Section IV. Put simply, the main goal of the module 2 is
to estimate the response time of web service composition as
well to verify the QoS constraints by retrieving the response
time of elementary web service from the local database
(step 7). Furthermore, we should adapt the WSC if the QoS
constraints are violated (step 8). In so doing, we can change
either the elementary web services that form the WSC, or
change the fixed constraints.

IV. USING QOS4WSC FOR THE VERIFICATION OF QOS
CONSTRAINTS

In contrast to previous works [9], [11], [13], we propose
an automatic tool that verifies QoS constraints for WSC.

Our approach is based on file composition parsing. Figure
2 depicts our proposed algorithm in order to parse a BPEL
file. Note that the BPEL file is a XML file. We recall that the
BPEL file contains the execution order of the web service
composition. In fact, the QoS verification module (Figure 1)
receives as input a fixed response time as QoS constraint and
a BPEL process that describes the WSC (Figure 2). Inside
the QoS verification module, the XML tree of the process
is created (Figure 2).

A XML file appears as an upside-down tree: if the XML
tree is well generated, it has a root that has branches
(<partnerLinks> and <sequence>) as illustrated in Fig-
ure 2. The <partnerLinks> contains the list of partners
(web services) that will participate in the WSC, whereas
<sequence> defines the execution order of the WSC as
it was specified in the BPEL file. Nevertheless, we should
verify if <partnerLinks> and <sequence> nodes are well
defined. In such case, the response time counter, identified
by the label “ResponseTime” in Figure 2, is initialized to
zero. Otherwise, the parsing is stopped (Figure 2) and an
error exception is sent.

If the constructors located in the <sequence> node match
one of the key constructors defined in Section III-A, we call
the related manager in order to estimate the corresponding
amount of time. It should be noted that a manager is
used in order to estimate the response time of a given
elementary service. Furthermore, a manager is related to a
key constructor, or a set of key constructors. The set of
managers that are used in our QoS4WSC middleware are
listed in Section IV-A to IV-H. Following a given manager,
if the response time of an elementary web service is violated,
the parsing is stopped (Figure 2) and a time-constraint
violation is sent to the provider of the web service.

In the following, we describe the managers used in
the algorithm illustrated in Figure 2. Also, we adopt the
following formalism:

Figure 2. Algorithm for parsing a BPEL process.

n∑
i=1

P [ci] = 1; with probability p[ci] of entering in the

branch ci
T[a]: defines the response time of the activity a
Twait: defines the waiting time
Tbody: defines the amount of time needed to execute one
iteration in a given loop
k: defines the number of iterations of a given loop
TscopeX : execution time of scope X of one activity
TrepeatEvery: execution time of one activity repeatEvery

A. “getResponseTime” manager

This manager makes the correspondence between two
attributes (partnerLink defined by the caller constructor
and name defined by the partnerLink constructor) to
know the invoked web service. Another matching is done
between the name attribute and partnerLinkType in
order to know the operation attribute of the service.

This allow to access to the database in order to retrieve the
response time of a given web service.

B. “flowActivity” manager
This manager is invoked if the current element, that we

are testing during the execution our algorithm (Figure 2),
is a <flow> constructor. The procedure enables to run
simultaneously a set of activities. The response time T [a]
of this procedure is: T [a] = max(T [a1],, T [an]).

Furthermore, during the parsing of the BPEL file, if a
key constructor like <receive>, or <invoke>, or <reply>
is found we call the getResponseTime manager. Otherwise,
if the <sequence> constructor that specifies a sequential
execution is found, we call the sequenceActivity manager.

C. “forEachActivity” manager
This manager is invoked if the current element, that we

are testing during the execution our algorithm (Figure 2), is
a <forEach> constructor. In such case, we should perform
all activities located in the sub-constructor <scope> exactly
k times, where k means the number of iterations specified
in the loop . The response time of this activity is given by
T [a] = k × Tbody .

In order to determine k, we fetch the “parallel”
attribute value. If the value of the parallel attribute is
set to “no”, then the number of iterations ranges from
<startCounterValue> to <finalCounterValue> parameters
which are defined in the “forEach” constructor. Otherwise, If
parallel attribute is set to “yes”, then k is equals to 1 and all
iterations should be execute in parallel. To determine Tbody ,
we call the sequenceActivity manager that receives as input
argument the <scope> sub-constructor.

D. “loopActivity” manager
This manager is invoked if the current element, that we

are testing during the execution our algorithm (Figure 2),
is a <while> or <repeatUntil> constructor. It should be
noted that for both constructors, the number of iterations
is not known in advance. Therefore, previous works like
[15], [16] have proposed to give as response time the overall
execution time of the loop. They do not take into account the
number of iterations inside the loop. This approach presents
several drawbacks in the sense that the response time can
be overestimated or underestimated.

To overcome the limitations of previous works, we pro-
pose a new approach in order to estimate the response time.
The response time is obtained by T [a] = k ∗ Tbody .

In our approach the value of k is related to the amount of
time specified in the QoS constraints. k’s value is not fixed
in contrast to previous works like [17], [18]. The values that
k can take depend on the remaining execution time of the
WSC. More the remaining execution time, following QoS
constraints, is high and more the value of k is important.
In such case, we should estimate the value of k in order to
estimate the response time.

E. “ifActivity” manager

This manager is invoked if the current element, that we
are testing during the execution our algorithm (Figure 2), is a
<if> constructor. Note that a “ifActivity” manager can have
the following branches <elseif> or/and <else>. Therefore,

the response time is equal to T [a] =

n∑
i=1

(T [ai] ∗ p[ci]).

If this constructor presents several branches the response
time can be estimated as T [a] = max(T [a1],, T [an])
where T [ai] means the elapsed time during the block i.

F. “pickActivity” manager

This manager is invoked if the current element, that
we are testing during the execution our algorithm (Figure
2), is a <pick> constructor. The goal is to wait the first
message defined by the <onMessage> constructor or a
signal marking the end of a timer defined in <onAlarm>
constructor. The <pick> constructor is formed by several
branches. Each branch refers to an event that can occur.

Therefore, the response time can be estimated as follows

T [a] =

n∑
i=1

(p[ci] ∗ (Twait + T [ai]))

Since, it is not possible to known in advance when an
event will be trigged, the response time is obtained by But
we do not know when an event is going to be trigged.
For this case, the response time will be using this equation
T [a] = Twait +max(T [a1],, T [an])

G. “duration” manager

This manager is called either by a <wait> constructor,
or a <onAlarm> constructor.

The attribute for specifies the delay before the awaken-
ing of the process (in the case of <wait>), or the triggering
of an alarm (in the case of <onAlarm>).

The date and the deadline are specified by assigning a
value to the until attribute.

H. “sequenceActivity” manager

This manager is called by other managers each time that
a set of activities should be run sequentially.

The goal of <eventHandlers> constructor is to wait the
first event <onEvent> or a signal marking the end of a timer
defined in <onAlarm>. If a given event does not occur until
the expiration of the deadline, then the associated activities
with respect to this <onAlarm> will be executed.

In this case, if the optional constructor <repeatEvery>
is defined, then the procedure will be repeated until
the parent scope of the <eventHandlers> activity
remains active. The response time expression is given by

T [a] =

n∑
i=1

(p[ci] ∗ (Twait + k ∗ (TscopeAlarm + TrepeatEvery)))

where k is equal to [
TscopeParent−Twait

TscopeAlarm+TrepeatEvery
].

If the “repeatEvery” is undefined (i.e, TrepeatEvery = 0)
then k = 1.

Note that “eventHandlers” activities are invoked in par-
allel with other activities during the processing phase. It’s
the reason why we do not take into account this constructor
during the computation of the response time. In fact, the
execution of this constructor is embedded inside other key
constructors.

V. IMPLEMENTATION AND EVALUATION

We implemented our framework by using the program-
ming language Java (JDK 1.6) and the Eclipse IDE (version
3.4.2). To make this practical environment, we used the plu-
gins WTP (Web Tools Platform) version 3.2.0, EMF (Eclipse
Modeling Framework), GEF (Graphical Editing Framework),
GMF (Graphical Modeling Framework) and BPEL Visual
Designer. We considered the following tools like Tomcat
(version 6.0.20), Axis2, PostgreSQL (version 8.4), Apache
ODE (Orchestration Director Engine) with 1.3.4 version, and
JDOM parser (version 1.6.1) which is an open source Java
API whose purpose to manipulate an XML document.

To evaluate our proposal, we consider the BPEL process
of a travel plan which is described in Figure 3. We use this
example in order to evaluate and compare our proposal with
respect to related work. We use as QoS metric the response
time of a web service composition.

Figure 3. Travel Plan process.

A. Discussion

The techniques proposed by Haddad et al. in [11], [13]
do not allow to estimate the response time of the composition

depicted in Figure 3. In fact, they do not take into account
the existence of loop constructor. Therefore, we argue that
their proposed techniques in [11], [13] work only if the
WSC is formed by the following constructors: sequence,
flow and switch. However, if a composition consider only
these three constructors, the estimated response time will
be done manually. Nevertheless, for complex WSC it is not
possible to do it manually.

Rud et al. [9] proposed to estimate the response time of
this composition (Figure 3) by using a manual approach due
to the lack of models and tools. In so doing, they aggregate
the different activities manually. For a complex WSC, this
solution is not appropriate due to high response time.

With our QoS4WSC approach, we can automatically find
in a few seconds the response time of a given WSC. We
performed our tests with a computer with a Core Duo 2.16
GHz frequency and 2 GB of RAM. With this example of
composition, despite all of parsing details we obtained a
response time of 6 seconds.

Note that our proposed middleware is generic in the sense
that it can handle any type of composition, and regardless
of its complexity and the number used constructors.

VI. CONCLUSIONS

Nowadays, it is mandatory to take into account QoS con-
straints in WSC. Therefore, in order to achieve a high quality
delivery of service composition, we proposed QoS4WSC
which is a middleware for QoS verification constraints. The
main goal of QoS4WSC is to allow WSC’s providers to
evaluate the response time of their composition. In such
case, we can achieve better efficiency with respect to the
amount of time that is need to retrieve the results of a given
WSC. In addition, the proposed tools can help designers
or suppliers in decision-making when such agreements are
established. Furthermore, QoS4WSC allow to these actors
to respect the contracted SLA (e.g, reduce or avoid QoS
constraints violation).

As future works, our framework can be improved by
developing a plug-in that can inherit all features of our QoS
constraints solution. The objective is to integrate this plug-in
in the palette to create a BPEL process. On the other hand,
the introduction of formal semantic in the life cycle of web
services composite can be considered.

REFERENCES

[1] R. Chinnici, J.-J. Moreau, S. Weerawarana, and R. Arthur,
“Web services description language (wsdl) version 2.0,” W3C
Recommendation 26, June 2007.

[2] L. Clement, Systinet, A. Hately, C. Von Riegen, and
T. Rogers, “Computer associates. uddi version 3.0.2, oasis
specification,” October 2004.

[3] M. Gudgin, M. Hadley, J.-J. Moreau, and H. Frystyk Nielsen,
“Simple object access protocol (soap) v 1.2. w3c,” July 2001.

[4] F. Cubera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi,
and S. Weerawarana, “Unraveling the web services : An
introduction to soap, wsdl, and uddi,” vol. 6, no 2, pp. 86–93,
July 2006.

[5] “Web services business process execution language version
2.0,” OASIS standard, April 2007.

[6] L. Jie Jin, V. Machiraju, and A. Sahai, “Analysis of service-
level agreement for web services,” HPL-2002-180, Tech.
Rep., 2002.

[7] A. Daniel Menascé, “Mapping service-level agreements in
distributed applications,” IEEE Internet Computing, pp. 100–
102., September-October 2004.

[8] M. C. Jaeger, G. R. Goldmann, and G. Muhl, “Qos aggrega-
tion for web service composition using workflow patterns,”
Proc. Eighth IEEE International Enterprise Distributed Ob-
ject Computing Conference, pp. 149–159., 2004.

[9] D. Rud, M. Kunz, A. Schmietendorf, and R. Dumke, “Per-
formance analysis in ws-bpelbased infrastructures,” 2007.

[10] F. Van Breugel and M. Koshkina, “Models and verification
of bpel,” September 2006.

[11] S. Haddad, L. Mokdad, and S. Youcef, “Response-time anal-
ysis of composite web services,” in In Proceedings, IEEE
Computer Society, 23-25 July 2008.

[12] A. Daniel Menascé, “Response-time analysis of composite
web services,” vol. 8, no 1, pp. 90–92, 2004.

[13] S. Haddad, L. Mokdad, and S. Youcef, “Response time
of bpel4ws constructors,” in Proceedings of the 15th IEEE
Symposium on Computers and Communications (ISCC’10),
2010, pp. 695–700.

[14] U. Vallamsetty, K. Kant, and P. Mohapatra, Characterization
of e-commerce traffic. Electronic Commerce Research, 2003,
vol. 3, no 2.

[15] L. Zeng, B. Bennatallah, H. Anne Ngu, H. Chang, M. Dumas,
and J. Kalagnanam, QoS-aware middleware for web services
composition. IEEE Transactions on Software Engineering,
2004.

[16] G. Canfora, M. Di Penta, R. Esposito, and L. Millani, “A
framework for qos-aware binding and re-binding of composite
web services,” Journal of Systems and Software, 81(10)
:1754-1769, pp. 414–417, 2008.

[17] J. Cardoso, A. Sheth, J. Miller, J. Arnord, and K. Kochut,
“Modeling quality of service for workflows and web service
processes,” Web Semantics Journal : Science, Services and
Agents on the WWW Journal 1 (3), pp. 281–308, 2004.

[18] F. Baligand, N. Rivierre, and T. Ledoux, “A declarative
approach for qos- aware web service compositions,” vol. 4749
of LNCS, pp. 422–428, 2007.

