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Abstract—The main goal of Cluster-based sensor networks
is to decrease system delay and reduce energy consumption.
LEACH is a cluster-based protocol for microsensor networks
which achieves energy-efficient, scalable routing and fair media
access for sensor nodes. However, the election of a malicious
or compromised sensor node as the cluster head is one the most
significant breaches in cluster-based wireless sensor networks. We
propose a deterministic key management scheme, called DKS-
LEACH, to secure LEACH protocol against malicious attacks.
Our contributions are twofold. Firstly, we design and performed
a theoretical evaluation of our security model which secures
the setup and study phases of LEACH protocol. Secondly,
using the TOSSIM simulator, we performed an evaluation of
the power consumption of DKS-LEACH. The results indicate
clear advantages of our approach in preventing the election of
untrustworthy cluster head as well different kind of attacks from
malicious sensor nodes.

Keywords-Wireless sensor networks; Key management; Secu-
rity; Energy consumption

I. INTRODUCTION

A Wireless Sensor Networks (WSN) is a network consisting
of a large number of micro, low-cost, low power consumption
and spatially distributed autonomous electronic devices using
sensors to cooperatively monitor physical or environmental
conditions [1].

The main drawbacks of sensor nodes is their energy limita-
tion. To reduce the emission range of sensor nodes, and thus
improve the node’s lifetime, cluster-based WSN is proposed
by the authors of [2], [3], [4]. In such case, each cluster is
managed by a cluster head (CH). The role of the CH is to
form the clusters and to gather the data sent by other sensor
nodes. Furthermore, it sends the aggregated data to the sink
which manages the WSN. In so doing, cluster-based WSN
achieves scalability and energy efficiency.

Adding security in cluster-based WSN is challenging. In
fact, sensor nodes organize periodically themselves into new
cluster. In such case, we have a periodic rearranging of the
network’s cluster key distribution. Furthermore, in cluster-
based WSN, it is mandatory to secure communication between
sensor nodes and CH, and between CH and the sink. The role
of the sink is to gather all information collected in the network
through CHs. Quite often the sink is also called base station.
In cluster-based WSN, the CHs are vulnerable to attacks [5].

In fact, they have the responsibility to route all messages
generated in the network.

In order to secure data in WSN, encryption keys must be
established among sensor nodes [6]. Key distribution refers
to the distribution of multiple keys among the sensor nodes,
which is typically a non-trivial security scheme. Key manage-
ment plays a central role in data encryption and authentication.
It is worth noticing that due to resource constrains of sensor
nodes, security based on public key like “Diffie-Hellmanand”,
are not suitable for sensor networks [7]. Therefore, the most
practical approach for bootstrapping secret keys in sensor
networks is to use pre-deployed keying. In such case, keys
are loaded into sensor nodes before their deployment. Few
works propose to manage the keys, that will be pre-deployed
in sensor nodes, either in a deterministic scheme [8], [9], or
in a probabilistic scheme [10].

Note that techniques based on probabilistic scheme [11],
[12] need to store an important subset of keys on each sensor
node. Furthermore, sensor nodes should exchange a lot of
messages to seek if they share the same key in order to
have a secure communication. The pre-distribution of secret
keys for all pairs of nodes is not suitable due to the large
amount of memory used when the network size is large. In
contrast, deterministic key management does not require to
pre-distribute a large amount of subset keys. Nevertheless, it
needs a time computation which is not negligible compared
to probabilistic scheme. It should be noted that in WSN, the
computation does not consume a lot of energy in contrast to
exchanged messages. So far, all solutions proposed to secure
LEACH [11], [12] are probabilistic-based.

In this paper, we propose a deterministic key management
scheme, called DKS-LEACH, in order to secure the LEACH
protocol. In fact, LEACH protocol is vulnerable to attacks
such as jamming, spoofing, replay, etc [5]. Since LEACH is a
cluster-based protocol, which relies fundamentally on the CH
for data aggregation and routing, attacks involving CH are the
most damaging. If a malicious node seeks to become a CH,
it can use a kind of attacks such as sinkhole and selective
forwarding.

In such case, it can disrupt the network. Note that, the
malicious node can choose to not attack the CH, and thus try
to inject erroneous information into the network. In so doing,



these wrong information will be relayed through the network.
To overcome theses limitations, we propose in DKS-LEACH
to set up dynamically cryptographic keys in an autonomous
manner.

The rest of this paper is organized as follows. Section II
reviews the related work on security with respect to cluster-
based WSN. Section III describes DKS-LEACH and Sec-
tion IV illustrates the performance of our deterministic key
management. Finally, we conclude and present some research
perspectives in Section V.

II. RELATED WORK

Some key management schemes [10], [9] have been specif-
ically designed for WSNs. Few are dedicated for hierarchical
sensors networks, whereas the remaining are appropriate for
flat sensors networks. These schemes typically assume that a
node interacts with a quite static set of neighbors and that most
of its neighborhood is discovered right after the deployment.
However, clusters in LEACH [2] are formed dynamically (at
random) and periodically, which changes interactions among
the nodes and requires that any node needs to be ready to join
any CH at any time. For more details about LEACH protocol,
the reader can refer to [2].

In the light of security challenge, the probabilistic scheme
was first proposed by Eschenauer and Gligor [10]. The prob-
abilistic key pre-distribution scheme, that they have proposed,
enables scalability and network resiliency against compromis-
ing. In fact, in [10] any pair of nodes needs to find a single
common key from their key rings to establish a secure link
during the setup phase. The main drawback of this proposition
is the use of one single key between two sensor nodes which
is very compromising. Indeed, based on one single key, an
attacker could easily discover the shared key.

The probabilistic key management schemes like [10], [12],
suffer a lot from security threats and communication overhead.
In fact, the nodes must set up secure link with some neighbor
nodes. This is realized by flooding the id of their keys.
With this approach, we notice a huge amount of exchanged
messages. Also, the lack of identity authentication may cause
several attacks including id replication. Finally, any pair of
nodes should establish a bidirectional link before the keys
exchange for future communication. Therefore, a key man-
agement based on a probabilistic approach like [10] is not
appropriate.

Nevertheless, SecLEACH [12] proposes to secure LEACH
by using a probabilistic scheme. In SecLEACH, each node
has K pre-distributed keys obtained randomly from a set of
keys P . The main advantage provided by SecLEACH is the
possibility to authenticate and to secure the communication
between CH and cluster’s members without the participation
of the BS. Note that, the authors of SecLEACH have already
proposed in [11] a protocol, called S-LEACH, in order to
secure LEACH. SecLEACH is an improvement of SLEACH.
Since there are only two keys per node, S-LEACH does not
provide a complete and efficient solution to node-to-cluster-
head authentication as said in [12].

Fig. 1. LEACH protocol with secure links

Xu et al. by using as metric the “Successful Attack Prob-
ability” have shown that the probabilistic key management
approaches have only limited performance advantages over
deterministic approaches [13]. LEAP [9] also proposes a deter-
ministic key distribution in hierarchical WSNs. The authors of
LEAP establish four types of keys that must be stored in each
sensor. Therefore, if LEAP is used to secure communication
in LEACH, a new key distribution could be required in each
round.

The approaches based on probabilistic key distribution
generate a lot of messages, require much more memory
space, and especially present compromising risks. In contrast,
the deterministic key distribution requires more computation
time for nodes. Note that computation consumes less energy
compared to the exchange of messages between sensor nodes.

III. KEY MANAGEMENT SCHEME FOR SECURING LEACH
PROTOCOL

A. DKS-LEACH architecture

DKS-LEACH is based on two types of keys: (i) a pairwise
key (KBS,CHi

) shared between the Base Station (BS) and
the Cluster Heads (CH); (ii) a Cluster’s Key (KCHi

) shared
between sensor nodes and the CH that form the same cluster.
For instance, the distribution of keys between nodes that form
our network is illustrated in Figure 1. In fact, these keys
are set dynamically during the initialization phase and the
cluster formation. For security reasons, keys are renewed in
each round [2]. A round in LEACH is the process where
cluster members are renewed and measurement tasks are done
with respect to a predetermined duration. During the bootstrap
phase, all sensor nodes share a same secret key. Note that,
each sensor node knows this secret before its deployment.
In contrast to [9], this secret key is changed after cluster’s
formation during the first round.

The obtained results show that, with respect to energy
consumption, the gap between DKS-LEACH and LEACH is
very low and DKS-LEACH does not require an important
storage space. In fact, before the deployment, sensor nodes
are preloaded with one global key. After the deployment, if
one node becomes CH, it needs to store one pairwise key



shared between the base station and itself; and the cluster’s key
between SN and itself. In other words, the CH needs only three
keys. For sensor nodes that are considered as SN, it needs just
to store the cluster’s key and the global key. Furthermore, the
messages used by DKS-LEACH are piggy backed to LEACH
messages, and thus, the number of exchanged messages are
reduced.

B. Assumption

In our study, we assume that the base station has unlimited
resources and it is considered trustworthy. When the network
is initialized, the BS generates a matrix Mkp at random. The
value of each element in the matrix Mkp is 0 or 1.

Mkp =


m11 m12 · · · m1p

m21
. . .

...
...

. . . mk−1p

mk1 · · · mkp−1 mkp



As each column of Mkp is dedicated to a sensor node, its
number of columns should be upper than the total number of
sensor nodes (N ).

C. Keys establishment phases in DKS-LEACH

Algorithm 1: Pairwise key Establishment
begin

if (isClusterHead) then
CHi −→ BS : E(KG0 , idCHi ‖ idBS ‖ nonce),
idCHi ‖ idBS ,MAC(KG0 , idCHi ‖ idBS ‖ nonce)
(..1)

else if (!isClusterHead) then
wait for cluster-head announcement

end
/* The base station computes the

pairwise key as follows */
BS : columnResult = column[idCHi ]

⊕
column[idBS]
BS : KSB,CHi = FKG0

(columnResult)

/* The base station sends the pairwise
to CH */

BS −→ CHi :
E(KG0 , idCHi ‖ idBS ‖ nonce ‖ KBS,CHi),
idCHi ‖ idBS ,MAC(KBS,CHi , idCHi ‖ idBS ‖ nonce)
(..2)

end

The DKS-LEACH approach has four phases: (i) initialization
(key pre-distribution); (ii) announcement of a new round; (iii)
pairwise key establishment; (iiii) cluster’s key establishment.
All these phases occur during the Set-up phase. The pairwise
keys and the cluster’s keys are used to encrypt the communi-
cations during the Steady-state phase. Both keys are encrypted
with the encryption function E(K,mess). Also, in order to

ensure authentication and integrity of both keys, we use a
Message Authentication Code MAC(K,mess).

During the initialization phase, the BS computes a set of
keys φ = KG0

,KG1
, . . . ,KGn

by using a keyed one-way
hash function FK(val). The KGi

key will be used during the
Set-up phase of each round. The KGi key can be seen as the
global key of the current round i. The BS selects a key out of
the set φ, and then pre-loads it in all sensor nodes. This key
will be used to encrypt the broadcast message sent for a new
round. We argue that only legitimate nodes may decrypt this
message. This key is deleted from the first round. It should
be noted that each exchanged message has a timestamp called
“nonce” that guarantee the freshness of information.

For the announcement phase of a new round, the BS
encrypts a threshold value, called proba, with the key KG0 ,
generates a MAC and sends these information in the network.
It is worth noticing that in LEACH, this threshold value
represents a given probability used by sensor nodes to become
CH. In fact, if a sensor node generates a value lower than
proba it acts as CH [2].

Algorithm 2: Cluster key Establishment (Step 1)
begin

if (isClusterHead) then
CHi −→ ∗ : E(KG0 , idCHi ‖ nonce ‖
ADV ), ADV,MAC(KG0, idCHi ‖ ADV );
(..3)

else if (!isClusterHead) then
SN −→ CHi :
E(KG0 , idSN ‖ idCHi ‖ JoinREQ ‖ nonce), idSN ‖
JoinREQ,MAC(KG0 , idCHi ‖ JoinREQ);
(..4)

end
/* The CH stores the id of each simple

node */
CHi : NodeMembers[i] = idSN ;
/* The CH sends the list of cluster’s

members to the BS */
CHi −→ BS : E(KCHi,BS , idCHi ‖ NodesMembers ‖
nonce), idCHi , idBS ,MAC(KCHi,BS , idCHi ‖ idBS ‖
nonce);
(..5)

end

If a simple node (SN) becomes cluster head, then a pairwise
key is established between itself and the BS. This is the
unique key which is shared between each CH and the BS.
The Algorithme 1 describes the processus of the pairwise key
creation.

Finally, after the pairwise key computation, the CH initiates
the cluster’s key computation in order to secure the commu-
nication between CH and simple nodes. This phase is divided
in two steps:

• During the first step, as illustrated by Algorithme 2, the
cluster head retrieves the id of each simple node that
belong the cluster. Afterwards, the CH sends the cluster’s
members to the BS.



• In the second step, the BS has already received the list
of simple nodes that belongs to a given cluster. The BS
uses the matrix Mkp described in Section III-B in order
to compute the argument that will be used by the keyed
one-way hash function (Algorithme 3). Following that,
the one-way hash function establishes the cluster’s key,
and thus, the BS can sends this key to the appropriate
CH. Note that, the key needed to set-up the newt round
is sent at the same time.

Algorithm 3: Cluster key Establishment (Step 2)
begin

/* The BS computes the cluster’s key */
for (i ∈ NodesMembers) do

columnResult = columnResult
⊕

column[i];
end
KCHi = FKSB,CHi

(columnResult) ;
/* The BS chooses the global key of the

next round */
KGi+1 = Φ [i+1] ;
/* The BS sends the cluster’s key and

the global key of the next round to
the CH */

BS −→ CHi : E(KBS,CHi ,KCHi ‖ KGi+1 ‖ idBS ‖
idCHi ‖ nonce), idBS ‖ idCHi ,MAC(KSB,CHi , idBS ‖
idCHi ‖ nonce) ;
(..6)
/* The CH transmits the cluster’s key

and the key global of the next round
to SN */

CHi −→ ∗ : E(KG0 , idCHi ‖ KCHi ‖ KG1 ‖
nonce), idCHi ,MAC(KG0 , idCHi ‖ nonce);
(..7)

end

IV. SECURITY AND PERFORMANCE ANALYSIS

A. Theoretical analysis

In our DKS-LEACH, the keys are encrypted before trans-
mission. Therefore we are protected against eavesdropping.
During the announcement of a new round the BS encrypts
the probability proba with the general key KGi

of the current
round. Only legitimated nodes that own the global key can
decrypt this message. Since the encrypted message and the
message authentication code (MAC) include the nonce, we
argue that all messages are not out to date. We guarantee a
freshness of messages exchanged in the network. Also, the
MAC allows all nodes to authenticate the BS as well the
integrity of the threshold proba received from the BS. We
recall that the goal of the threshold proba is to allow nodes
to become or not a CH (see Section III-C).

If a node becomes CH, it encrypts its id, generates a MAC
and sends these information to the BS as labeled (..1) in
Algorithm 1. This prevents a malicious node to attempt to
establish a pairwise key. The main reason is due to the fact
that malicious nodes will not be authenticate by the BS and
thus will be rejected by the BS. Afterwards, the BS encrypts

the pairwise key, generates a MAC and sends directly all
information to the CH (..2) (Algorithm 1). The confidentiality
of the pairwise key allows us to avoid eavesdropping attack.
The MAC provides authentication of the BS and the integrity
of the received key. Therefore, we establish a pairwise key
between the CH and the BS in a secure manner.

To establish the cluster’s key, the CH encrypts the message
“adv”, generates a MAC, and uses a broadcast message
to send information to all SN. Only legitimated nodes can
decrypt the message and return a join req response which
contains their id. In fact, we ensure the confidentiality, the
authentication and the integrity of adv and join req messages
(..4). This secure mechanism enables only the participation
of safe nodes during the cluster’s formation. These steps
are illustrated in Algorithm 2. Note that the same security
mechanism are ensured in Algorithm 3.

Complexity Analysis : DKS-LEACH has only two types
of keys (cluster’s key and pairwise key), and the number
of keys does not depend to the number of sensor nodes.
Therefore, DKS-LEACH is suitable for large WSN. In contrast
to SecLeach and S-LEACH where the number of keys follows
the number of nodes. Table I illustrates a comparison between
DKS-LEACH, SecLEACH, and S-LEACH with respect to the
complexity of key management. The parameter m in Table I
represents the number of keys located in each subset.

Furthermore, DKS-LEACH is suitable for large WSN. Due
to most of operations to build, session key is computed by the
base station, that it will reduce the overhead of simples nodes.

B. Performance analysis

1) Simulation setup: We have implemented LEACH and
DKS-LEACH using the TinyOS environment [14]. All sim-
ulations were carried out using the TOSSIM simulator [15].
TOSSIM is a simulator of WSN which compiles a TinyOS
application and simulates a sensor network executing the target
application. In order to analyze the output trace given by
TOSSIM, we have used the PowerTossim extension. This
tool gives accurate energy reports based on mica2 motes
consumptions: cpu, radio, sensors etc.

We have also used TinySec, which is implemented in
TinyOS, as a cryptographic library. TinySec contains two
cryptographic ciphers: Skipjack and RC5. It should be noted
that in our simulations, we used the Skipjack algorithm for
computing encryptions and for the MAC. The main reason is
due to the fact that Skipjack is faster than RC5 with respect
to computation time.

We have done our simulations following different grid
topologies. Simulation time for all scenarios was fixed to 500
seconds. We consider a network size of 50, 100, 150, and 200
sensor nodes. It should be noted that sensor nodes are deployed
at random in the network. The number of chosen CH is fixed
to 10% with respect to the number of sensor nodes inside the
network. We consider two metrics : the energy consumption
and the end-to-delay. The end-to-end delay represents the
elapsed time between a measurement task, done by a sensor
node, and its reception by the base station.



Space storage Type of keys Connectivity
S-LEACH m keys × key size pairwise, cluster, broadcast probabilistic

SecLEACH m keys × key size pairwise, cluster, broadcast probabilistic
DKS-LEACH (3 keys for CHi and 2 keys for SN) × key size pairwise, cluster 100%

TABLE I
COMPARISON OF PROPERTIES BETWEEN THE KEY MANAGEMENT PROTOCOLS.

For each given network size k, we compute for each metric
the average as the average of all values corresponding to
10 simulations results. In our simulations, we adopt Lossy
propagation model.

2) Energy consumption: Based on TOSSIM, we measured
the energy consumption of LEACH and DKS-LEACH. We
compute the average, minimum, maximum energy consumed
following different number of sensor nodes. Note that, we
performed 10 simulations for each network size.

Figure 2 illustrates the impact of the number of sensor
nodes in the performance of DKS-LEACH when we take
into account the energy consumption as metric. Since we
performed 10 simulations, error bars in Figure 2 indicates
the minimum and the maximum energy consumed by a given
sensor node according to our different simulations.

Figure 2(a) and Figure 2(b) show the average energy con-
sumption of sensor nodes following different network size.
Based on both figures, we remark that the gap between DKS-
LEACH and LEACH is very low. DKS-LEACH by increasing
a little bit the average power consumption allows to secure
LEACH. By lack of space, the figures that illustrated these
results are not shown.

Figure 2(b) shows that DKS-LEACH respects the main
characteristic of LEACH which expresses that the energy
consumption is not related to number of sensor nodes. Note
that DKS-LEACH consumes on average more than 1.775%
compared to LEACH (Figures 2. This gap is due to exchanged
messages used in order to secure LEACH. It should be
noted that the energy consumption of CH is upper than the
consumption of SN. The maximum values illustrated by error
bars (Figure 2) represent the energy consumption of CHs.
Based on Figure 2(b), we remark that the CH consumption
according to DKS-LEACH is more important compared to
LEACH’s CH. The main reason is due to the fact that in DKS-
LEACH CH do more computation.

3) End to End Delay: To evaluate the end-to-end delay
(EED), we used the simulator PowerTossim in order to extract
the delays, between sensor nodes, obtained from TOSSIM.
Indeed, this file allows us to retrieve the time when packets
are sent and received between sensor nodes.

Figure 3 illustrates the average EED computed overall
sensor nodes in the network. As shown in the Figure 3, we note
that the EED is not related to the number of nodes deployed
in the network. In fact, a simple node can send its information
in one hop. SN just need to send the information to its CH,
and afterwards the CH aggregate data and send it to the BS.
The gap noticed between DKS-LEACH and LEACH is also
very low. This means that the encryption of messages does not

(a) LEACH

(b) DKS-LEACH

Fig. 2. Energy consumption of sensor nodes.

take a lot of time. Also, the number of sensor nodes inside
the network does not influence the end-to-end delay.

Fig. 3. Comparison of end-to-end delay between DKS-LEACH and LEACH



V. CONCLUSION

We presented DKS-LEACH, a deterministic key manage-
ment, for securing node-to-node communication in LEACH
protocol. We performed a theoretical analysis of our deter-
ministic key management. By securing the communications
between simple nodes an cluster head as well the communi-
cation between cluster heads and the base station we enable
LEACH to avoid a different type of attacks from malicious
nodes.

Our results show that the overhead incurred by DKS-
LEACH compared to LEACH is small. DKS-LEACH allows
to level off the energy consumption and the end-to-delay
even if the number of sensor nodes increase in the network.
Furthermore, by using a limited number of keys DKS-LEACH
minimize the memory usage in contrast to the previous works.

As future works, we plan to take into account the case where
a sensor node and/or the base station are compromise by a
malicious node. We plan to add self-resilience scheme to DKS-
LEACH.
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