Publication pour la présente candidature LAFPT

Titre S-FPG: A parallel version of FP-Growth algorithm under Apache Spark™
Auteurs | Ajssatou Diaby dite Gassama, Fodé Camara, Samba Ndiaye
Référence | International Conference on Cloud Computing and Big Data Analysis
(ICCCBDA)
Editeur | IEEE
Pages 98 - 101
Année | 2017
DOI 10.1109/ICCCBDA.2017.7951891
URL https://ieeexplore.ieee.org/document/7951891
Index https://www.scopus.com/authid/detail.uri?authorld=6701604512
ISBN | 978-1-5090-4498-6
Encadreur | o
Extrait Non

d’une thése

IEEE org | IEEE Xpiore Digital Library | IEEE-SA | IEEE Spectrum | Maore Sites

IEEE X;"_').fl(':l.rel= > Institutional Sign In

Digital Library

My Settings Get Help v Subscribe

~ H earches metadata only by defaull A search for 'smart grid’ = "smart AND grid')

Conferences = 2017 IEEE 2nd Intemational C.. e

S-FPG: A parallel version of FP-Growth algorithm under Apache Spark™
Aizsatou Diaby dite Gassama ; Fodé Camara ; Samba Ndiaye View All Authors

187

Ful @ + @ © I
Text Wiews
Abstract Abstract:

Frequent liemseis Mining (FIM) is an essential data mining task, with many real world applications such as
Document Seclions market basket analysis, outlier detection. and =0 one Many efficient single-node FIM algorithms such as

the well-known FP-Growth algorithm have been proposed in the last two decades. However, as large-scale

datasets are usually adopted nowadays, these algorithms become inefficient to mine frequent itemsets

Il Frequent emset over big data. Scalable parallel algorithms hold the key to solving the problem in this context However, ihe
Mining: Background existing paraliel versions of FP-Growth algorithm implemented with the disk-based MapReduce model are

not efficient enough for iterative computation. In this paper, we propose an implementation of scalable

parallel FP-Growth using the in-memory parallel computing framework Apache Spark™. Qur experimental

results demonsirated that the proposed algorithm can scale well and efficiently process large datasets.

I Introducticn

Il Spark Parallel
Computing Framewaork

IV. Related Works

V. The s-Fpag Algorith
e, Published in: 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis

Show Full Outline = (ICCCBDA)

Authars
Date of Conference: 28-30 April 2017 INSPEC Accession Number: 16967014

Figures Date Added to IEEE Xplore: 19 June 2017 DOI: 10.1109/ICCCBDA.2017.7951891
References ¥ ISBN Information: Publisher: [EEE

Electronic ISBN: 9758-1-5090-4499-3 .)
Keywontis Print ISBN: 978-1-5090-4498-6 Conference Location: Chengdu, China

CD-ROM ISBN: 978-1-5090-4497-9
Metrics Print on Demand(PoD) ISBN: 978-1-5090-

4500-6

2017 the 2nd IEEE International Conference on Cloud Computing and Big Data Analysis

S-FPG: A Parallel Version of FP-Growth Algorithm under Apache Spark™

Aissatou Diaby dite Gassama’, FodéCamara?, Samba Ndiaye'
! Department of mathematics, Cheikh Anta Diop University, Dakar, Senegal
2 Departement of mathematics, Alioune Diop University, Bambey, Senegal
e-mail: aissatou.gassama@ucad.edu.sn, samba.ndiaye@ucad.edu.sn, fode.camara@uadb.edu.sn

Abstract—Frequent Itemsets Mining (FIM) is an essential data
mining task, with many real world applications such as market
basket analysis, outlier detection, and so one. Many efficient
single-node FIM algorithms such as the well-known FP-
Growth algorithm have been proposed in the last two decades.
However, as large-scale datasets are usually adopted nowadays,
these algorithms become inefficient to mine frequent itemsets
over big data. Scalable parallel algorithms hold the key to
solving the problem in this context. However, the existing
parallel versions of FP-Growth algorithm implemented with
the disk-based MapReduce model are not efficient enough for
iterative computation. In this paper, we propose an
implementation of scalable parallel FP-Growth using the in-
memory parallel computing framework Apache Spark™. Our
experimental results demonstrated that the proposed
algorithm can scale well and efficiently process large datasets.

Keywords-frequent itemset mining; fp-growth algorithm;
parallel computing; apache spark™

l. INTRODUCTION

Frequency mining problem represents the core of several
data mining algorithms such as association rule mining and
sequence mining [1]. It also extended to data mining tasks of
classification [2] and clustering [3]. The Frequent Itemsets
Mining problem (FIM) consists to find relations between
attributes in a database. For example, using shopping tickets,
we can find associations between items: for example, we can
find that bread is frequently purchased with chocolate or
wine and chips are often bought together. Many algorithms
were proposed to achieve this task. Some well-known
algorithms are Apriori and FP-Growth [1, 4].

As datamining area is facing new challenges in the age of
big data, the need to improve the efficiency of classical
frequent itemsets mining algorithms is a challenge task for
researchers. In fact, the applications of traditional single-
node algorithms for frequent itemsets mining in the large-
scale datasets will easily cause high CPU consumption, high
memory cost, high 1/O overhead, low computing
performance and some other issues [5]. For these reasons,
many researchers have proposed several parallel methods to
address these issues.

MapReduce parallel programming model provides the
first idea for handling big data, and several MapReduce
approaches of parallel frequent itemsets mining have been
proposed. Among these, we can cite [5, 6, 7, 8].

However MapReduce parallel programming framework
causes very high 1/O overhead for iterative computations

978-1-5090-4497-9/17/$31.00 ©2017 IEEE

98

because it is a disk-based model [5]. Then, MapReduce
framework is not suited for the frequent itemsets algorithms
which need intensive iterated computation.

For this reason, we propose a new parallel version of FP-
Growth algorithm, that we call S-FPG (for Spark FP-
Growth), using the Apache Spark™ that is an in-memory-
based and iterative computing framework. Our choice of FP-
Growth algorithm is motivated by the fact that this algorithm
employs a unique search strategy using compact structures
resulting in a high performance algorithm that requires only
two database passes. In addition, we don’t need to iteratively
use k-frequent itemsets to generate (k+1)-frequent itemsets.
The experimental results show the efficiency and the
scalability of our proposal.

The rest of the paper is organized as follows. Section Il
presents briefly the basic concepts of FIM. Section IlI
describes the Spark parallel computing framework. Section
IV discusses related works. In section V, we give the details
of S-FPG algorithm. In Section VI, we evaluate the
performance of our algorithm and compare it with existing
ones. Section VII concludes the paper and gives some future
works.

Il. FREQUENT ITEMSET MINING: BACKGROUND

A. Preliminaries

Given a set of items | = {I1, ..., In} and a database D as a
set of transactions T, each transaction is a subset of I (T < 1)
and is identified by an identifier TID. An itemset X is a
subset of items (X < 1), and an itemset of length k is called a
k-itemset. The support of an itemset X is the percentage of
transactions in D that contains X. If the support of an itemset
is greater than or equal to a given support threshold o, it is
called a frequent itemset. The objective of a FIM algorithm
is to find all frequent itemsets, given an input database D and
a support threshold c.

The two well-known FIM algorithms are briefly
described in the subsections below.

B. Apriori Algorithm

Apriori is the first and the best-known algorithm to mine
frequent itemsets [1]. It uses a breadth-first search strategy to
count the support of itemsets and uses a candidate generation
function which exploits the downward closure property of
support. This property states that if an itemset is frequent,
then all its subsets are also frequent; and if an itemset is
infrequent, then all its supersets must being frequent too.

The main drawback of Apriori is the fact that it can be
very slow and the bottleneck is the candidate generation step.
For example if the database has 10* frequent 1-itemsets, they
will generate 10" 2-itemsets candidates even after employing
the downward closure. To determine the frequent 2-itemsets,
the database needs to be scanned several times. Generally it
needs (n+1) scans, where n is the length of the longest
pattern.

C. FP-Growth Algorithm

The FP-Growth algorithm [4] uses the frequent pattern
tree (FP-Tree) structure. FP-tree is an improved tree structure
such that each itemset is stored as a string in the tree along its
frequency. In the first pass, the algorithm counts occurrence
of items in the dataset, and stores them to a header table. In
the second pass, it builds the FP-tree structure by inserting
instances. Items in each instance have to be sorted by
descending order of their frequency in the dataset, so that the
tree can be processed quickly. Items in each instance that
frequency is less than minimum threshold are discarded.
Then, if many instances share most frequent items, FP-tree
provides high compression of initial dataset. Recursive
processing of this compressed version of main dataset grows
large itemsets directly, instead of generating candidate items
and testing them against with the entire dataset. FP-Growth
starts from the bottom of the header table (having longest
branches), by dividing the compressed dataset (or database)
into a set of conditional databases. Each one is associated
with one frequent pattern. Finally, the corresponding
conditional FP-tree is generated and is mined separately.
Using this strategy, the FP-Growth reduces the search costs.
Once the recursive process has completed, all large itemsets
have been found.

To illustrate the behavior of the FP-Growth algorithm,
we consider the following initial dataset Figure 1-(a) and its
transformed version within in each transaction is sorted by
descending order according to the values of frequent 1-
itemset (see Figure 1-(b)). Figure 1-(c) represents the
corresponding FP-tree, and Table 1 contains the conditional
pattern base, the conditional FP-tree and generated itemsets.

I1l. SPARK PARALLEL COMPUTING FRAMEWORK

Apache SparkTM is an open-source cluster computing
framework. In contrast to Hadoop’s disk-based MapReduce
model, Spark's in-memory primitives provide performance
up to 10 times faster for certain applications such as FIM [9].
By allowing user programs to load data into a cluster's
memory and analyze it iteratively, Apache Spark™ is well
suited to data mining algorithms which are often iterative.
Apache Spark™ requires a cluster manager and a distributed
storage system. For cluster management, Apache Spark™
supports standalone (native Spark cluster), Hadoop YARN,
or Apache Mesos. For distributed storage, Apache Spark™
can interface with a wide variety of systems, including
Hadoop Distributed File System (HDFS), Cassandra and
Amazon S3 [9].

99

IV. RELATED WORKS

To address the FIM problem over big data issue, several
algorithms were proposed [6, 7, 8]. The main drawback of
these works is the fact that they are based on MapReduce
model.

ID Items ID Items
T100 |11,12,15 T100 |12,11,15
T200 |12,14 T200 | 12,14
T300 | I1,I3 T300 | 11,13
T400 |11,12,14 T400 |12,11,14
T500 | 12,13 T500 | 12,13
T600 | 12,13 T600 | 12,13
T700 | 11,13 T700 | 11,13
T800 |11,12,13,15 T800 | 12,11,13,15
T900 |11,12,13 T900 | 12,11,13

@ (b)

Null

N O N

Figure 1. A sample transaction set, its sorted version and the corresponding
FP-tree structure

TABLEl. CONDITIONAL PATTERN BASE AND CONDITIONAL FP-TREE

GENERATED WITH FP-TREE STRUCTURE GIVEN IN FIGURE 1.

Item Conditional pattern Conditional Genered

base FP-tree itemsets
15 <I2,11>:1,<12,11,13>:1 12:2 11:2 {12,I15}:2
{11,15}:2

{12,11,15}:2
14 <I2,11>:1,<12>:1 12:2 {12, 14}:2
13 <I2,11>:2,<12>:2 <11>:2 12:4 11:2 {12,13}:4
{11,13}:4

{12,11,13}:2
11 <12>:4 12:4 {12,11}:4

To the best of our knowledge, the pioneering work of
parallel frequent itemsets mining with Apache Spark™ is

described in [5].

V. THES-FPG ALGORITHM

Algorithme 1- SFPG
Input: f, the input file and minimal support d
Output: Complete set of frequent itemsets
Begin
: T=flatmap(line=>f.getTransaction())
: Foreach transaction line in T
: Foreach item | in transaction line
> mapToPair(1=>(1,1))
: EndForeach
: EndForeach
F1 reduceByKey(_+).filter(item which
frequency is greater than d)
8 : Generate the header table from F1
9 : Build the FPTree as follows :
10 : Create root of a FP-tree with label “null”
11 : Forall transaction line € T do
12 : Sort frequent items in transaction line according
to F1. Let sorted list be [head|L] where head is the head
of the list and L the rest.
13 : additems([head|L], tree)
14 : end Forall
15 : FP-Growth(tree)
End

NooabhwNE

Algorithm 2 addltems([head|L], tree)
Begin

1: if root has a child N such that item[N]=item[head]
then

2 :count[N] <« count[N]+ 1

3 :else

4 : Create new node N with count = 1, parent linked
to root and node-link linked to nodes with the same item
via next

5:endif

6 : if head<>null then

7 : addltems (L,N)

8:endif
End

Algorithm 3 FP-Growth(Tree)
Begin
1: if Tree contains a single path P then
2 : Generate all combinations of the subpaths of P.
Each P represents a frequent itemset with support is
minimum support of nodes init.
3:else
4 : For all ai in header table of Tree do
5 : Construct ai’s conditional pattern base and then
ai’s conditional FP-Tree Treeai
6 : if Treeai is not null then
7 : FP-Growth(Treeai)
8 :endif
9 : end for
10: end if
End

100

VI. PERFORMANCE EVALUATION

The experiments were performed on a cluster consisting
of 4 nodes, where each node has 8 cores Intel® Xeon® E5
processors running at 2.60 GHz, with 56 GB memory and a
382 GB disk. The computing nodes are all running at the
Windows Server 2012 and Java 1.7.0_55.

We used six benchmark real-world datasets chosen from
the FIM repository [10]: retail is market basket data from an
anonymous Belgian retail store. Chess is a dataset listing
chess end game positions for king vs. king and rook. Dataset
bms-pos contains several years of point-of-sale data from a
large electronic retailer ; whereas datasets bms-webviewl
and bms-webview?2 contain several months of clickstream
data from an e-commerce website. Some statistics of those
datasets are presented in Table II.

TABLE Il. CHARACTERISTICS OF BENCHMARK DATASETS
Name |T| 1] [tlavg
retail 88,162 16,470 10.31
bms-pos 515,597 1,657 6.50
bms-webviewl 59,602 497 2.50
bms-webview?2 77,512 330,286 5.00
chess 3,196 75 37.00

A. Speed up Evaluation

We evaluated the speedup metric by evaluate how much
faster S-FPG algorithm is than PFP implementation provided
by the Mahout library [11], a corresponding MapReduce
algorithm, by decreasing the minimal support while keeping
the size of datasets constant.

We measure the speedup metric with the following formula:
T

PFP

S:

TS -FPG

where S is the resultant speedup, TPFP is the PFP execution
time and TS—FPG is the S-FPG execution time.

The running times of S-FPG and PFP algorithms are
plotted with support threshold 0.25% for real-world
databases in Figure 2 (b).

Figure 2 (b) shows that S-FPG outperforms PFP about 15
times in average for bms-webviewl, 10 times for bms-
webview?2, 6 times for chess, 4 times for bms-pos and 3
times for retail dataset. Figure 2 (a) also shows the difference
of execution times using 100% stacked columns. We can see
that the speedup factor between S-FPG and PFP algorithms
decreases when the support threshold is growing.

1003
80
B0
A0
20

0%

= PFP

= 5-FPG

Relative time (%)

0.25 0.5 1

Support (%)

(a)

__ 200
& 150
£ 100
§ s0
i o mPpFp
[E-S I\
& éﬁ’% ﬁ}e?‘{\, & o =5-FPG
o '?‘q,z L;“P
&
Realworld datasets (Support=0.25%]
{b}
— 1500
£ 1000
=
K]
5 500
¥
da 0
1 10 | 20 | 40 80 | 160 | 320
5-FPG| 4 12 | 21 19 EXE i | 51
—FPFF 105 | 114 | 130 | 218 | 352 | 642 [1356

Replicated times of original data (Sup=85%)

(e}

Figure 2. Experimental results.

B. Size up Evaluation

To evaluate the size up factor, we keep the support
threshold to 85% by replicating chess dataset 10, 20, 40, 80,
160 and 320 times in order to get larger datasets. Figure 2 (c)
shows the data scalability performance. We can see that the
execution time cost of our algorithm grows slowly when the
size of the dataset increases. In contrast, the execution time
of PFP algorithm grows exponentially.

VII. CONCLUSION

In this paper, we presented a new parallel version of FP-
Growth algorithm to mine a frequent itemsets from big data.

101

We demonstrated that the proposed algorithm can scale well
and efficiently process large datasets. Our proposal confirms
the suitability of Apache Spark™ for FIM problem over
large databases. In the future, we plan to improve S-FPG
algorithm by using a data structure more compact than FP-
tree to reduce the memory consumption.

REFERENCES

R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules
between Sets of Items in Large Databases. Proceedings of ACM
SIGMOD, Washington DC, 1993.

B. Liu, W . Hsu, and Y . Ma. Integrating Classification and
Association Rule Mining. Proceedings ofACM SIGKDD, New York,
NY, 1998.

K. Wang, X. Chu, and B. Liu. Clustering Transactions Using Large
Items. Proceedings of ACMCIKM, USA, 1999.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In W. Chen, J. Naughton, and P. A. Bernstein, editors,
2000 ACM SIGMOD Intl. Conference on Management of Data, pages
1-12. ACM Press, May 2000.

Hongjian Qiu, Rong Gu, Chunfeng Yuan, Yihua Huang, Yihua
Huang. YAFIM: A Parallel Frequent Itemset Mining Algorithm with
Spark. Proc. of the 2014 I|EEE 28th International Parallel &
Distributed Processing Symposium Workshops(ParLearning), pages
1664 - 1671, Phoenix, AZ, USA, May. 19-25, 2014.

Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y.
Chang. PFP: Parallel FP-Growth for Query Recommendation. In
Proceedings of the 2008 ACM conference on Recommender systems.

Li N., Zeng L., He Q. & Shi Z. Parallel Implementation of Apriori
Algorithm Based on MapReduce. Proc. of the 13th ACIS
International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel & Distributed Computing
(SNPD “12). Kyoto, IEEE: 236 — 241.

Sandy Moens, Emin Aksehirli, and Bart Goethals. Frequent itemset
mining for big data. In 2013 IEEE International Conference on Big
Data, IEEE, 2013, pages 111-118.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing.
Technical Report UCB/EECS-2011-82, EECS Department, University
of California, Berkeley, July 2011.

Frequent itemset mining dataset repository. http://fimi.ua.ac.be/data,
2004.

[11] Apache Software Foundation, —Apache Mahout, June 2010, URL
http://mahout.apache.org/.

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

[10]

