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Abstract—Frequent Itemsets Mining (FIM) is an essential data 

mining task, with many real world applications such as market 

basket analysis, outlier detection, and so one. Many efficient 

single-node FIM algorithms such as the well-known FP-

Growth algorithm have been proposed in the last two decades. 

However, as large-scale datasets are usually adopted nowadays, 

these algorithms become inefficient to mine frequent itemsets 

over big data. Scalable parallel algorithms hold the key to 

solving the problem in this context. However, the existing 

parallel versions of FP-Growth algorithm implemented with 

the disk-based MapReduce model are not efficient enough for 

iterative computation. In this paper, we propose an 

implementation of scalable parallel FP-Growth using the in-

memory parallel computing framework Apache SparkTM. Our 

experimental results demonstrated that the proposed 

algorithm can scale well and efficiently process large datasets. 

Keywords-frequent itemset mining; fp-growth algorithm; 

parallel computing; apache sparkTM 

I.  INTRODUCTION  

Frequency mining problem represents the core of several 
data mining algorithms such as association rule mining and 
sequence mining [1]. It also extended to data mining tasks of 
classification [2] and clustering [3]. The Frequent Itemsets 
Mining problem (FIM) consists to find relations between 
attributes in a database. For example, using shopping tickets, 
we can find associations between items: for example, we can 
find that bread is frequently purchased with chocolate or 
wine and chips are often bought together. Many algorithms 
were proposed to achieve this task. Some well-known 
algorithms are Apriori and FP-Growth [1, 4]. 

As datamining area is facing new challenges in the age of 
big data, the need to improve the efficiency of classical 
frequent itemsets mining algorithms is a challenge task for 
researchers. In fact, the applications of traditional single-
node algorithms for frequent itemsets mining in the large-
scale datasets will easily cause high CPU consumption, high 
memory cost, high I/O overhead, low computing 
performance and some other issues [5]. For these reasons, 
many researchers have proposed several parallel methods to 
address these issues. 

MapReduce parallel programming model provides the 
first idea for handling big data, and several MapReduce 
approaches of parallel frequent itemsets mining have been 
proposed. Among these, we can cite [5, 6, 7, 8]. 

However MapReduce parallel programming framework 
causes very high I/O overhead for iterative computations 

because it is a disk-based model [5]. Then, MapReduce 
framework is not suited for the frequent itemsets algorithms 
which need intensive iterated computation. 

For this reason, we propose a new parallel version of FP-
Growth algorithm, that we call S-FPG (for Spark FP-
Growth), using the Apache Spark

TM
 that is an in-memory-

based and iterative computing framework. Our choice of FP-
Growth algorithm is motivated by the fact that this algorithm 
employs a unique search strategy using compact structures 
resulting in a high performance algorithm that requires only 
two database passes. In addition, we don’t need to iteratively 
use k-frequent itemsets to generate (k+1)-frequent itemsets. 
The experimental results show the efficiency and the 
scalability of our proposal. 

The rest of the paper is organized as follows. Section II 
presents briefly the basic concepts of FIM. Section III 
describes the Spark parallel computing framework. Section 
IV discusses related works. In section V, we give the details 
of S-FPG algorithm. In Section VI, we evaluate the 
performance of our algorithm and compare it with existing 
ones. Section VII concludes the paper and gives some future 
works. 

II. FREQUENT ITEMSET MINING: BACKGROUND 

A. Preliminaries 

Given a set of items I = {I1, ..., In} and a database D as a 
set of transactions T, each transaction is a subset of I (T ⊆ I) 
and is identified by an identifier TID. An itemset X is a 
subset of items (X ⊆ I), and an itemset of length k is called a 
k-itemset. The support of an itemset X is the percentage of 
transactions in D that contains X. If the support of an itemset 
is greater than or equal to a given support threshold σ, it is 
called a frequent itemset. The objective of a FIM algorithm 
is to find all frequent itemsets, given an input database D and 
a support threshold σ. 

The two well-known FIM algorithms are briefly 
described in the subsections below. 

B. Apriori Algorithm 

Apriori is the first and the best-known algorithm to mine 
frequent itemsets [1]. It uses a breadth-first search strategy to 
count the support of itemsets and uses a candidate generation 
function which exploits the downward closure property of 
support. This property states that if an itemset is frequent, 
then all its subsets are also frequent; and if an itemset is 
infrequent, then all its supersets must being frequent too. 
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The main drawback of Apriori is the fact that it can be 
very slow and the bottleneck is the candidate generation step. 
For example if the database has 10

4
 frequent 1-itemsets, they 

will generate 10
7
 2-itemsets candidates even after employing 

the downward closure. To determine the frequent 2-itemsets, 
the database needs to be scanned several times. Generally it 
needs (n+1) scans, where n is the length of the longest 
pattern. 

C. FP-Growth Algorithm 

The FP-Growth algorithm [4] uses the frequent pattern 
tree (FP-Tree) structure. FP-tree is an improved tree structure 
such that each itemset is stored as a string in the tree along its 
frequency. In the first pass, the algorithm counts occurrence 
of items in the dataset, and stores them to a header table. In 
the second pass, it builds the FP-tree structure by inserting 
instances. Items in each instance have to be sorted by 
descending order of their frequency in the dataset, so that the 
tree can be processed quickly. Items in each instance that 
frequency is less than minimum threshold are discarded. 
Then, if many instances share most frequent items, FP-tree 
provides high compression of initial dataset. Recursive 
processing of this compressed version of main dataset grows 
large itemsets directly, instead of generating candidate items 
and testing them against with the entire dataset. FP-Growth 
starts from the bottom of the header table (having longest 
branches), by dividing the compressed dataset (or database) 
into a set of conditional databases. Each one is associated 
with one frequent pattern. Finally, the corresponding 
conditional FP-tree is generated and is mined separately. 
Using this strategy, the FP-Growth reduces the search costs. 
Once the recursive process has completed, all large itemsets 
have been found. 

To illustrate the behavior of the FP-Growth algorithm, 
we consider the following initial dataset Figure 1-(a) and its 
transformed version within in each transaction is sorted by 
descending order according to the values of frequent 1-
itemset (see Figure 1-(b)). Figure 1-(c) represents the 
corresponding FP-tree, and Table 1 contains the conditional 
pattern base, the conditional FP-tree and generated itemsets. 

III. SPARK PARALLEL COMPUTING FRAMEWORK 

Apache SparkTM is an open-source cluster computing 
framework. In contrast to Hadoop’s disk-based MapReduce 
model, Spark's in-memory primitives provide performance 
up to 10 times faster for certain applications such as FIM [9]. 
By allowing user programs to load data into a cluster's 
memory and analyze it iteratively, Apache Spark

TM
 is well 

suited to data mining algorithms which are often iterative. 
Apache Spark

TM
 requires a cluster manager and a distributed 

storage system. For cluster management, Apache Spark
TM

 
supports standalone (native Spark cluster), Hadoop YARN, 
or Apache Mesos. For distributed storage, Apache Spark

TM 

can interface with a wide variety of systems, including 
Hadoop Distributed File System (HDFS), Cassandra and 
Amazon S3 [9]. 

IV. RELATED WORKS 

To address the FIM problem over big data issue, several 
algorithms were proposed [6, 7, 8]. The main drawback of 
these works is the fact that they are based on MapReduce 
model. 

 
                       (a)                                                     (b) 

 
   (c) 

Figure 1. A sample transaction set, its sorted version and the corresponding 

FP-tree structure 

TABLE I.    CONDITIONAL PATTERN BASE AND CONDITIONAL FP-TREE 

GENERATED WITH FP-TREE STRUCTURE GIVEN IN FIGURE 1. 

Item Conditional pattern 
base 

Conditional 
FP-tree 

Genered 
itemsets  

I5 <I2,I1>:1,<I2,I1,I3>:1 
 

I2:2 I1:2 
 

{I2,I5}:2   

{I1,I5}:2 
{I2,I1,I5}:2 

I4 <I2,I1>:1,<I2>:1 I2:2 {I2, I4}:2 

I3 <I2,I1>:2,<I2>:2,<I1>:2 I2:4 I1:2 
 

{I2,I3}:4   
{I1,I3}:4  
{I2,I1,I3}:2   

I1 <I2>:4 I2:4 {I2,I1}:4 

 
To the best of our knowledge, the pioneering work of 

parallel frequent itemsets mining with Apache Spark
TM

 is 
described in [5]. 
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V. THE S-FPG ALGORITHM 

Algorithme 1- SFPG 
Input: f, the input file and minimal support d 
Output: Complete set of frequent itemsets 
Begin 

1 : T=flatmap(line=>f.getTransaction()) 
2 : Foreach transaction line in T 
3 : Foreach item I in transaction line 
4 : mapToPair(I=>(I,1)) 
5 : EndForeach 
6 : EndForeach 
7: F1 = reduceByKey(_+_).filter(item which    
frequency is greater than d) 
8 : Generate the header table from F1 
9 : Build the FPTree as follows : 
10 : Create root of a FP-tree with label “null” 
11 : Forall transaction line ∈ T do 
12 : Sort frequent items in transaction line according 

to F1. Let sorted list be [head|L] where head is the head 
of the list and L the rest. 

13 : addItems([head|L], tree) 
14 : end Forall 
15 : FP-Growth(tree) 

End 
 
Algorithm 2 addItems([head|L ], tree) 
Begin 

1: if root has a child N such that item[N]=item[head] 
then 

2 : count[N ] ← count[N ] + 1 
3 : else 
4 : Create new node N with count = 1, parent linked 

to root and node-link linked to nodes with the same item 
via next 

5 : end if 
6 : if head<>null then 
7 : addItems (L,N) 
8 : end if 

 End 
 
Algorithm 3 FP-Growth(Tree) 
Begin 

1 : if Tree contains a single path P then  
2 : Generate all combinations of the subpaths β of P. 
Each β represents a frequent itemset with support is 
minimum support of nodes init. 

3 : else  
4 : For all ai in header table of Tree do 
5 : Construct ai’s conditional pattern base and then 
ai’s conditional FP-Tree Treeai 
6 : if Treeai is not null then 
7 : FP-Growth(Treeai) 
8 : end if 
9 : end for 
10 : end if 

End 

VI. PERFORMANCE EVALUATION 

The experiments were performed on a cluster consisting 
of 4 nodes, where each node has 8 cores Intel® Xeon® E5 
processors running at 2.60 GHz, with 56 GB memory and a 
382 GB disk. The computing nodes are all running at the 
Windows Server 2012 and Java 1.7.0_55. 

We used six benchmark real-world datasets chosen from 
the FIM repository [10]: retail is market basket data from an 
anonymous Belgian retail store. Chess is a dataset listing 
chess end game positions for king vs. king and rook. Dataset 
bms-pos contains several years of point-of-sale data from a 
large electronic retailer ; whereas datasets bms-webview1 
and bms-webview2 contain several months of clickstream 
data from an e-commerce website. Some statistics of those 
datasets are presented in Table II. 

TABLE II.    CHARACTERISTICS OF BENCHMARK DATASETS 

Name |T| |I| |t|avg 

retail 88,162 16,470 10.31 

bms-pos 515,597 1,657 6.50 

bms-webview1 59,602 497 2.50 

bms-webview2 77,512 330,286 5.00 

chess 3,196 75 37.00 

 

A. Speed up Evaluation 

We evaluated the speedup metric by evaluate how much 
faster S-FPG algorithm is than PFP implementation provided 
by the Mahout library [11], a corresponding MapReduce 
algorithm, by decreasing the minimal support while keeping 
the size of datasets constant. 
We measure the speedup metric with the following formula:  

PFP

S FPG

T
S

T 

  

where 𝑆 is the resultant speedup, 𝑇𝑃𝐹𝑃 is the PFP execution 
time and 𝑇𝑆−𝐹𝑃𝐺 is the S-FPG execution time. 

The running times of S-FPG and PFP algorithms are 
plotted with support threshold 0.25% for real-world 
databases in Figure 2 (b). 

Figure 2 (b) shows that S-FPG outperforms PFP about 15 
times in average for bms-webview1, 10 times for bms-
webview2, 6 times for chess, 4 times for bms-pos and 3 
times for retail dataset. Figure 2 (a) also shows the difference 
of execution times using 100% stacked columns. We can see 
that the speedup factor between S-FPG and PFP algorithms 
decreases when the support threshold is growing. 
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Figure 2. Experimental results. 

B. Size up Evaluation 

To evaluate the size up factor, we keep the support 
threshold to 85% by replicating chess dataset 10, 20, 40, 80, 
160 and 320 times in order to get larger datasets. Figure 2 (c) 
shows the data scalability performance. We can see that the 
execution time cost of our algorithm grows slowly when the 
size of the dataset increases. In contrast, the execution time 
of PFP algorithm grows exponentially. 

VII. CONCLUSION 

In this paper, we presented a new parallel version of FP-
Growth algorithm to mine a frequent itemsets from big data. 

We demonstrated that the proposed algorithm can scale well 
and efficiently process large datasets. Our proposal confirms 
the suitability of Apache Spark

TM
 for FIM problem over 

large databases. In the future, we plan to improve S-FPG 
algorithm by using a data structure more compact than FP-
tree to reduce the memory consumption. 
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