
Publication pour la présente candidature LAFPT

Titre A Parallelized mRMR Method for Feature Selection Based on Spark

Auteurs Reine Marie Ndéla Marone ; Fodé Camara ; Samba Ndiaye

Référence International Conference on Innovations and Interdisciplinary Solutions for
Underserved Areas (InterSol 2018)

Editeur Springer

Pages 187-198

Année 2018

URL https://link.springer.com/chapter/10.1007%2F978-3-319-98878-8_18

DOI https://doi.org/10.1007/978-3-319-98878-8_18

Index https://www.scopus.com/sourceid/21100220348

ISBN 978-3-319-98877-1

Encadreur Oui

Extrait
d’une thèse

Oui

A Parallelized mRMR Method for Feature Selection
Based on Spark

Reine Marie Ndéla Marone1 , Fodé Camara2, Samba Ndiaye1

1 Department of mathematics, Cheikh Anta Diop University, Dakar, Senegal
2 Departement of mathematics, Alioune Diop University, Bambey, Senegal

email: fode.camara@uadb.edu.sn, reine.marie.marone@ucad.edu.sn

Abstract. Nowadays, we are surrounded by enormous large-scale high
dimensional data called big data and it is crucial to reduce the dimensionality of
data for machine learning problems. That’s why feature selection plays a vital
role in the process of machine learning because it aims to reduce high-
dimensionality by removing irrelevant and redundant features from original
data. However some characteristics of big data like data velocity, volume and
data variety have brought new challenges in the field of feature selection. In
fact, most of existing feature selection algorithms were designed for running on
a single machine (centralized computing architecture) and do not scale well
when dealing with big data. Their efficiency may significantly deteriorate to the
point of becoming inapplicable. For this reason, there is an increasing need for
scalable yet efficient feature selection methods. In this paper, we propose a
parallel scalable feature selection algorithm based on mRMR (Max-Relevance
and Min-Redundancy) in Spark: an in-memory parallel computing framework
specialized in computation for large distributed datasets. Our experiments using
real-world data of high dimensionality show that our distributed method
outperforms the centralized feature selection mRMR method and scale well and
efficiently with large datasets.

Keywords: feature selection, filter method, parallel computing, apache spark,
mRMR, SVM.

1 Problematic and related works

1.1 Introduction

Feature selection is the process of selecting relevant features for uses in model
construction and removing those irrelevant and redundant from the dataset [1]. It is
widely used in many domains where there are many features and a few samples for
example: genes selection, anomaly detection, pattern recognition and many others
fields.

Unfortunately, most feature selection algorithms are designed for centralized
computing and do not scale well with large-scale datasets, and their efficiency

 2

significantly deteriorates or even becomes inapplicable [3]. Distributed computing
techniques such as MapReduce [3] along with its open-source implementation
Apache Hadoop can help alleviate this problem; effectively allowing users to work
with Big Data [3].

But the MapReduce parallel programming with Apache Hadoop is not suited for the
feature selection because it causes very high I/O overhead for iterative computations
[4]. More recently, Apache Spark [4] has been presented as an alternative to Hadoop
and improves the IO read /write performance issue by processing intermediate data in-
memory [4].

In regard to that, in this paper, we propose a parallel version of the centralized
mRMR algorithm that we have named SFS-mRMR (for Spark Feature Selection
method based on mRMR), on the open-source parallel processing framework Spark to
improve its performance. The choice of mRMR is motivated by the fact that minimum-
redundancy-maximum-relevance (mRMR) selector is considered one of the most
relevant method for dimensionality reduction due to its high accuracy.

 The results that we obtained show that our algorithm is scalable and outperforms
the classical mRMR feature selection method.

The rest of the paper is structured as follows:
Section 2 reviews previous works. Section 3 deals with the formulation of the

problem. Section 4 presents the centralized mRMR. Section 5 gives the metrics we
used in our proposal. Section 6 consists of the presentation of our algorithm. Section 7
describes the working environment. Section 8 evaluates the performance of our
algorithm. Section 9 is the conclusion of this paper.

1.2 Related works

Feature selection is a fundamental preprocessing step to reduce input dimensionality.
In general feature selection methods can be classified into 3 major categories:

Filter, Wrapper and embedded [5].
In the wrapper methods the “usefulness” of a subset of features is evaluated on the

basis of the classifier performance [5].
Embedded methods exploit intrinsic characteristics of a given model to guide the

feature selection process, and choose features which best contribute to the accuracy
performance of the model [5].

In Filter methods, features are selected on the basis of characteristics, which
determine their relevance or discriminant powers with the outcome variable [5, 6].
Filter methods offer better computational complexity but do not take into account the
interactions among the variables, which cannot be ignored. Many filter methods are
based on information theory- specifically mutual Information. That’s the case with
mRMR. But mRMR is a centralized method and do not scale well with ultrahigh
dimensional datasets. So optimizing its implementation through efficient
parallelization is crucial today [7]. That’s why, proposals have been made on the
parallelization of mRMR algorithm the interest of which is to decrease the training
time and improve modeling task (prediction, recognition, classification).

In [1] authors parallelize a large set of well-known information theory-based
methods including mRMR in Apache Spark.

Experimental results for a large number of real-world datasets have led to
competitive performance (in terms of generalization and efficiency) in case of ultra-
high-dimensional datasets.

 3

The work in [8] proposes to extend mRMR by using a number of approaches to
better explore the feature space and build more robust predictors. To deal with the
computational complexity of those approaches, authors implement and parallelize
functions in C using the openMP Application Programming Interface. These methods
show significant gains in terms of run-time.

Authors in [9] present a two-stage selection algorithm by combining ReliefF and
mRMR. In the first stage, ReliefF is applied to find a candidate gene set; In the second
stage, mRMR method is applied to directly and explicitly reduce redundancy for
selecting a compact yet effective gene subset from the candidate set. The experimental
results show that the mRMR-ReliefF gene selection algorithm is very effective.

In [10], authors present three implementations of an extension of mRMR named
fast-mRMR in several platforms, namely, CPU for sequential execution, GPU
(graphics processing units) for parallel computing, and Apache Spark for distributed
computing using big data technologies.

In [11], authors combined dynamic sample space with mRMR and proposed a new
feature selection method. In each iteration, the weighted mRMR values are calculated
on dynamic sample space consisting of the current unlabelled samples. The feature
with the largest weighted mRMR value among those that can improve the
classification performance is selected in preference. Five public datasets were used to
demonstrate the superiority of this method.

It is clear that the methods presented in these different works use the complex
iterative computations because many of them include iteratively one or many features
into a subset of features. In what we propose, a subset of relevant and non-redundant
features can be selected in only one single pass. That allows a more significant
reduction of the learning time while keeping good classification accuracy.

1.3 Problem definition

We focus on two-class classification issues, the target class label l∈ {0, 1}. F is the
given feature set {f1,..,fn}. An instance V is represented by a m-dimensional vector
(v1,..,vn), where vj is the value of the feature fj in V. Let O(S, T) be the objective
function which evaluates the subset S of F using the data T. The subset S1 is better than
S2 if O(S1, T) >O(S2, T).

In this paper, we assume n so large as in the big data context, and we proposed a
large-scale filter method: SFS-mRMR for Spark Feature Selection method based on
mRMR (Minimum Redundancy and Maximum Relevancy). We used the well-known
parallel computing framework, Apache SparkTM to implement the algorithm.

2 Improvement of mRMR

2.1 The classical mRMR

mRMR means Minimum Redundancy and Maximum Relevance. The concept of
mRMR is to select the features so that they are mutually maximally dissimilar and

 4

maximally relevant with the class label l [12]. Let fi and f j be two variables in F.

),(ji ffMI represents the measure of mutual information between the variables fi and

f j .),(iflMI stands for the measure of mutual information between the class label

l and if .
The redundancy among the features in F, which is determined by the mutual

information among them, is given by

QI (F) =
1
F 2 MI(fi, f j)

fi , f j∈F
∑

 (1)

The relevance of the features in F with the class label l is computed as

RI (F) =
1
F

MI(l, fi)
fi∈F
∑ (2)

The maximally relevant and minimally redundant set of feature F* among all sets
F’ in F is obtained by optimizing (1) and (2) as follows:

F* = argmaxF '⊆F[RI (F)−QI (F)] (3)

2.2 Our proposal

Many authors worked on ranking SVM using weights from linear SVM (support
vector machines) and obtained good performances [13]. That’s why, in our method
SFS-mRMR, we use the metric given by the authors in [14] which combines linear
support vector machines and the mRMR criterion to rank the features for better
results. Let β ∈ [0, 1] determines the tradeoff between SVM ranking and mRMR

ranking. The relevancy iFR ,
of feature fi in the F set in classification is given by

RF,i =
1
F

MI(l, fi)
l
∑ (4)

And QF,i the redundancy of feature fi in the set F in classification is given by

QF,i =
1
F 2 MI(fi, f j)

fi , f j∈F
∑ (5)

Let ωi denotes the SVM weight of the feature fi .
For i-th feature, the ranking measure di is given by

 5

di = β ωi + (1−β)
RF,i
QF,i

 (6)

3 Our algorithm

Our proposed algorithm, called SFS_mRMR, is a feature selection method based on
Spark, a parallel programming framework. Let S refer to the input dataset (with n
features and m instances) and K the number of features to return. Let β be the tradeoff
between SVM ranking and mRMR ranking, and x number of partitions for the dataset.
F denotes the features space. The output S’ will be the optimal subset of K features
with max di score.

Our algorithm follows seven steps:
§ Step 1: create x partitions of features

1. Construct labels={ 1l ,.., ml } the set of the class
label in each instance of the dataset.

2. Construct values={{ 1
iv ,.., m

iv }, i=1 to n }

values represents the set of values vi
j for each feature

fi in each instance Ij:
3. Construct x subspaces of features SFt, t = 1..x from

the entire feature space F.

4. Construct x subspaces subt of {{
1
iv ,.., m

iv }, i SF}
5. Each subt will be sent to a unique worker (among the

x workers).
§ Step 2: associate features by two with labels
On each worker t:
6. Create several sets for each feature fi in subt by

mapping fi with each other feature fj in F as follows:

fi=>{ fi, {
1
iv ,.., m

iv }, { 1
jv ,.., m

jv } , { 1l ,.., ml }}

We call the set {fi, { 1
iv ,.., m

iv }, { 1
jv ,.., m

jv },

{ 1l ,.., ml }, i=1 to n, j=1 to m } obtained rdd2.

§ Step 3: calculate the mutual information between

features and the relevance of each feature
In this step, we use each element of rdd2 to calculate

mutual information ijM between each feature fi and another

feature fj of F. We compute also the relevance Ri (mutual
information with his class label) of fi. We proceed as
follows:

Foreach element e ⊂ rdd2

 6

7. rdd [(fi, ijM , Ri)] = mapToPair (e=>{ fi, ijM , Ri })

 ijM = MutualInformation ({ 1
iv ,.., m

iv }, { 1
jv ,.., m

jv })

Ri= MutualInformation ({
1
iv ,.., m

iv }, { 1l ,.., ml }) /n

where lk∈1..m represents the label of class in instance Ik..
EndForeach
The constituted set of each feature fi, its mutual

information with another feature fj and its mutual
information Ri with the class label will be called rdd3.

§ Step 4 : aggregate the mutual information for each
feature by summing them.

In order to obtain the redundancy of each feature fi,
sum its mutual information with the other features of F
and keep the mutual information with the class label (for
the relevance). A new set is then obtained and we call it
rdd4. Each element in rdd4 consists of {fi, sumMij , Ri},

where fi is the feature, ijsumM is the sum of mutual

information between fi and the other features of the space
of features F and Ri the mutual information between fi and
the class label.
This corresponds to the following instructions:

Foreach element (fi, ijM , Ri) rdd3

8. rdd [(fi, ijsumM , Ri)]= reduceByKey (_+_)

ijsumM = ∑
=

n

i
ijM

1

EndForeach
§ Step 5: for each feature, compute the SVM weight
In this step compute for each feature fi its SVM
weight ωi as follows:

Foreach fi F
9. rdd [(fi,

ωi)]= map (fi =>{ fi, ωi })

ωi ω where ω =SVMWeight(F)
EndForeach

§ Step 6: for each feature, compute the rapport di
between relevance and redundancy
In this step calculate for each feature fi the ranking

measure di that represents a tradeoff between the

 7

redundancy and the relevance of fi. Then send all di
values to the master.
This is done as follows:

Foreach element (fi, ijsumM , Ri) rdd4

10. rdd [(fi,di)]= mapToPair ({fi, sumMij , Ri } =>{fi, di
})

Qi= ijsumM /(n*n);

di =β + ωi +((1-β)* (Ri /Qi));

/* ωi is the SVM weight of attribute fi*/
EndForeach
11. All workers send di to the master
§ Step 7: Choose the best features in F
Finally, master collects, orders and returns the K

features with the best scores di . This corresponds to the
following sentences:
On the master:
12. Collect and take ordered
13. Return S’: optimal subset of K features in S with

highest scores di .

4 Experimental setup and results

4.1 Data Description

We used support vector machine as classifier and LibSVM as the support vector
machine tool.

We used two benchmark real-world datasets chosen from mldata.org [15]. Some
informations of those datasets are presented in Table 1.

TABLE 1. CHARACTERISTICS OF BENCHMARK DATASETS

NAME NUMBER
OF FEATURES

NUMBER OF INSTANCES

COLON-CANCER 2000 62

COLON-TUMOR 2000 60

The experiments were performed on a cluster consisting of 4 nodes, where each

node has 8 cores running at 2.60 GHz, with 56 GB memory and a 382 GB disk, then

 8

on a cluster of 6nodes with the sames parameters. The computing nodes are all
running at the linux.

4.2 Experimental Results

In this part, we will first discuss the scalability of our solution then we will compare
the execution time of our proposal with the one of centralized mRMR.

Figures 1, 2 and 3 show respectively how the execution time varies according to
the number of nodes when we select 25%, 50% or 75% of the dataset.

Figure 1. Scalability of SFS_mRMR and classical mRMR with 25%.

Figure 2. Scalability of SFS_mRMR and classical mRMR with 50%.

 9

Figure 3. Scalability of SFS_mRMR and classical mRMR with 75%.

The concerned figures clearly show that the execution time of our proposal
considerably decreases when the number of nodes increases whereas the time taken
by classical mRMR remains constant.

We have used 4 then 6nodes for the scalability. And for every case we have run the
tests using the same environment.

For every dataset we first select 25% then 50% and after 75% of features.
ü Colon-cancer

Figure 4 and figure 5 shows the time taken by our method comparatively to the one
of centralized mRMR for respectively 4 and 6nodes.

Figure 4. Time taken for colon-cancer with 4nodes

 10

Figure 5. Time taken for colon-cancer with 6nodes

As we can notice, the execution time of our method is at least 4 times shorter
compared to the one of centralized mRMR.

ü Colon-Tumor
For colon-tumor the results obtained with 4nodes are the following ones given in

figure 6:

Figure 6. Time taken for colon-tumor with 4nodes

With a cluster of 6nodes the execution time is stated in figure 7.

 11

Figure 7. Time taken for colon-tumor with 6nodes

As for the colon-cancer we can notice that the execution time of our method SFS-
mRMR is also 4times shorter at least.

Therefore, we can conclude from these experiments that our solution outperforms
the centralized mRMR method in terms of execution time. Moreover, the more we
increase the number of nodes, the shorter the execution time becomes in our method
whereas the one of centralized mRMR remains constant.

In our experiments we have used datasets limited to 2000 features, because beyond
that number, the centralized mRMR takes too much time to run. For example, for
certain datasets above 2000 mRMR can take days to run completely.

5 Conclusion

In this paper, we have proposed a parallel and scalable version of a centralized feature
selection method named mRMR. Our proposal was developed on Spark an in-
memory parallel computing framework specialized in computation for large
distributed datasets.

In our method, a score is given to each feature to evaluate its redundancy with the
others features of the dataset and its relevance relatively to the class label. Then the
features presenting the highest score are returned.

Experimental results demonstrates that our algorithm achieves a great performance
improvement in scaling well and reduces the time taken by mRMR for selecting
relevant and non redundant features.

In the future, we plan to parallelize many other centralized feature selection
methods like relief or rfe-svm.

 ACKNOWLEDGMENT

In this work, Microsoft Azure has sponsored us and we would like to take this
occasion to express them our thanks.

Without their help we would not have been able to test our algorithms in a cluster
and we would not have reached our goals.

 12

References

1. Sergio Ramırez-Gallego, Hector Mourino-Talın, David Martınez-Rego,Veronica Bolon-
Canedo, Jose Manuel Benıtez, Amparo Alonso-Betanzos and Francisco Herrera. An
Information Theory-Based Feature Selection Framework for Big Data under Apache
Spark.Journal of latex class files, vol. 13, no. 9, september 2014.

2. Vaishali Chahar, Rita Chhikara, Yogita Gigras and Latika Singh. Significance of Hybrid
Feature Selection Technique for Intrusion Detection Systems.Indian Journal of Science and
Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/105827, December 2016.

3. Zhao Z., Cox J., Duling D., Sarle W. (2012) Massively Parallel Feature Selection: An
Approach Based on Variance Preservation. In: Flach P.A., De Bie T., Cristianini N. (eds)
Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2012. Lecture
Notes in Computer Science, vol 7523. Springer, Berlin, Heidelberg.

4. Dilpreet Singh and Chandan K Reddy. A survey on platforms for big data analytics. J Big
Data. 2015; 2(1): 8.Published online 2014 Oct 9.

5. Chuan Liu, Wenyong Wang, Qiang Zhao andMartin Konan. A new feature selection method
based on a validity index of feature subset.Pattern Recognition Letters,Volume 92, 1 June
2017, Pages 1-8.

6. Wenyan Z, Xuewen L , Jingjing W. Feature Selection for Cancer Classi cation Using
Microarray Gene Expression Data. Biostat Biometrics Open Acc J. 2017;1(2): 555557.

7. Jaseena K.U. and Julie M. David.Issues, challenges, and solutions: big data mining.Sixth
International Conference on Networks & Communications,DOI: 10.5121/csit.2014.41311.

8. De Jay, Nicolas and Papillon, Simon and Olsen, Catharina and El-Hachem, Nehme and
Bontempi, Gianluca and Haibe-Kains, Benjamin. MRMRe: An R package for parallelized
mRMR ensemble feature selection. Bioinformatics (Oxford, England), July 2013,
http://dx.doi.org/10.1093/bioinformatics/btt383.

9. Yi Zhang, Chris Ding and Tao Li. Gene selection algorithm by combining reliefF and
mRMR. BMC Genomics. 2008; 9(Suppl 2): S27, doi: 10.1186/1471-2164-9-S2-S27.

10. Ramírez-Gallego, Sergio and Lastra, I and Martinez, David and Bolón-Canedo, Verónica
and Benítez, José and Herrera, Francisco and Alonso-Betanzos, Amparo. Fast-mRMR: Fast
Minimum Redundancy Maximum Relevance Algorithm for High-Dimensional Big Data:
FAST-mRMR ALGORITHM FOR BIG DATA. International Journal of Intelligent
Systems, July 2016, DOI: 10.1002/int.21833.

11. Yuansheng Yang, Haiyan Li, Xiaohui Lin and Di Ming. Recursive Feature Selection Based
on Minimum Redundancy Maximum Relevancy. Parallel Architectures, Algorithms and
Programming (PAAP), 2010 Third International Symposium on,
DOI:10.1109/PAAP.2010.52.

12. Monalisa Mandal, Anirban Mukhopadhyay. An Improved Minimum Redundancy Maximum
Relevance Approach for Feature Selection in Gene Expression Data. Jul 2016 · IEEE/ACM
Transactions on Computational Biology and Bioinformatics.

13. Yin-Wen Chang and Chih-Jen Lin. Feature ranking using linear SVM.Proceedings of the
Workshop on the Causation and Prediction Challenge at WCCI 2008, PMLR 3:53-64, 2008.

14. Piyushkumar A. Mundra and Jagath C. Rajapakse.SVM-RFE With MRMR Filter for Gene
Selection.IEEE transactions on nanobioscience, vol. 9, no. 1, march 2010.

15. http://mldata.org/repository/data/viewslug/ovarian-cancer-nci-pbsii-data/.

