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Abstract. Nowadays, we are surrounded by enormous large-scale high 
dimensional data called big data and it is crucial to reduce the dimensionality of 
data for machine learning problems. That’s why feature selection plays a vital 
role in the process of machine learning because it aims to reduce high-
dimensionality by removing irrelevant and redundant features from original 
data.  However some characteristics of big data like data velocity, volume and 
data variety have brought new challenges in the field of feature selection. In 
fact, most of existing feature selection algorithms were designed for running on 
a single machine (centralized computing architecture) and do not scale well 
when dealing with big data. Their efficiency may significantly deteriorate to the 
point of becoming inapplicable. For this reason, there is an increasing need for 
scalable yet efficient feature selection methods. In this paper, we propose a 
parallel scalable feature selection algorithm based on mRMR (Max-Relevance 
and Min-Redundancy) in Spark: an in-memory parallel computing framework 
specialized in computation for large distributed datasets. Our experiments using 
real-world data of high dimensionality show that our distributed method 
outperforms the centralized feature selection mRMR method and scale well and 
efficiently with large datasets. 

Keywords: feature selection, filter method, parallel computing, apache spark, 
mRMR, SVM. 

1 Problematic and related works 

1.1   Introduction 

Feature selection is the process of selecting relevant features for uses in model 
construction and removing those irrelevant and redundant from the dataset [1]. It is 
widely used in many domains where there are many features and a few samples for 
example: genes selection, anomaly detection, pattern recognition and many others 
fields.  

Unfortunately, most feature selection algorithms are designed for centralized 
computing and do not scale well with large-scale datasets, and their efficiency 
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significantly deteriorates or even becomes inapplicable [3]. Distributed computing 
techniques such as MapReduce [3] along with its open-source implementation 
Apache Hadoop can help alleviate this problem; effectively allowing users to work 
with Big Data [3]. 

But the MapReduce parallel programming with Apache Hadoop is not suited for the 
feature selection because it causes very high I/O overhead for iterative computations 
[4]. More recently, Apache Spark [4] has been presented as an alternative to Hadoop 
and improves the IO read /write performance issue by processing intermediate data in-
memory [4]. 

In regard to that, in this paper, we propose a parallel version of the centralized 
mRMR algorithm that we have named SFS-mRMR (for Spark Feature Selection 
method based on mRMR), on the open-source parallel processing framework Spark to 
improve its performance. The choice of mRMR is motivated by the fact that minimum-
redundancy-maximum-relevance (mRMR) selector is considered one of the most 
relevant method for dimensionality reduction due to its high accuracy.  

 The results that we obtained show that our algorithm is scalable and outperforms 
the classical mRMR feature selection method. 

The rest of the paper is structured as follows:  
Section 2 reviews previous works. Section 3 deals with the formulation of the 

problem. Section 4 presents the centralized mRMR. Section 5 gives the metrics we 
used in our proposal. Section 6 consists of the presentation of our algorithm. Section 7 
describes the working environment. Section 8 evaluates the performance of our 
algorithm. Section 9 is the conclusion of this paper. 

1.2   Related works 

Feature selection is a fundamental preprocessing step to reduce input dimensionality. 
In general feature selection methods can be classified into 3 major categories: 

Filter, Wrapper and embedded [5].  
In the wrapper methods the “usefulness” of a subset of features is evaluated on the 

basis of the classifier performance [5]. 
Embedded methods exploit intrinsic characteristics of a given model to guide the 

feature selection process, and choose features which best contribute to the accuracy 
performance of the model [5]. 

In Filter methods, features are selected on the basis of characteristics, which 
determine their relevance or discriminant powers with the outcome variable [5, 6]. 
Filter methods offer better computational complexity but do not take into account the 
interactions among the variables, which cannot be ignored. Many filter methods are 
based on information theory- specifically mutual Information. That’s the case with 
mRMR. But mRMR is a centralized method and do not scale well with ultrahigh 
dimensional datasets. So optimizing its implementation through efficient 
parallelization is crucial today [7]. That’s why, proposals have been made on the 
parallelization of mRMR algorithm the interest of which is to decrease the training 
time and improve modeling task (prediction, recognition, classification).  

In [1] authors parallelize a large set of well-known information theory-based 
methods including mRMR in Apache Spark. 

Experimental results for a large number of real-world datasets have led to 
competitive performance (in terms of generalization and efficiency) in case of ultra-
high-dimensional datasets. 
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The work in [8] proposes to extend mRMR by using a number of approaches to 
better explore the feature space and build more robust predictors. To deal with the 
computational complexity of those approaches, authors implement and parallelize 
functions in C using the openMP Application Programming Interface. These methods 
show significant gains in terms of run-time.  

Authors in [9] present a two-stage selection algorithm by combining ReliefF and 
mRMR. In the first stage, ReliefF is applied to find a candidate gene set; In the second 
stage, mRMR method is applied to directly and explicitly reduce redundancy for 
selecting a compact yet effective gene subset from the candidate set. The experimental 
results show that the mRMR-ReliefF gene selection algorithm is very effective. 

In [10], authors present three implementations of an extension of mRMR named 
fast-mRMR in several platforms, namely, CPU for sequential execution, GPU 
(graphics processing units) for parallel computing, and Apache Spark for distributed 
computing using big data technologies.  

In [11], authors combined dynamic sample space with mRMR and proposed a new 
feature selection method. In each iteration, the weighted mRMR values are calculated 
on dynamic sample space consisting of the current unlabelled samples. The feature 
with the largest weighted mRMR value among those that can improve the 
classification performance is selected in preference. Five public datasets were used to 
demonstrate the superiority of this method. 

It is clear that the methods presented in these different works use the complex 
iterative computations because many of them include iteratively one or many features 
into a subset of features. In what we propose, a subset of relevant and non-redundant 
features can be selected in only one single pass. That allows a more significant 
reduction of the learning time while keeping good classification accuracy. 

1.3   Problem definition 

We focus on two-class classification issues, the target class label l∈ {0, 1}. F is the 
given feature set {f1,..,fn}. An instance V is represented by a m-dimensional vector 
(v1,..,vn), where vj is the value of the feature fj in V. Let O(S, T) be the objective 
function which evaluates the subset S of F using the data T. The subset S1 is better than 
S2 if O(S1, T) >O(S2, T). 

In this paper, we assume n so large as in the big data context, and we proposed a 
large-scale filter method: SFS-mRMR for Spark Feature Selection method based on 
mRMR (Minimum Redundancy and Maximum Relevancy). We used the well-known 
parallel computing framework, Apache SparkTM to implement the algorithm. 

2 Improvement of mRMR 

2.1   The classical mRMR 

mRMR means Minimum Redundancy and Maximum Relevance. The concept of 
mRMR is to select the features so that they are mutually maximally dissimilar and 
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maximally relevant with the class label l [12]. Let fi and f j  be two variables in F.  

),( ji ffMI  represents the measure of mutual information between the variables fi and 

f j . ),( iflMI  stands for the measure of mutual information between the class label 

l and if . 
The redundancy among the features in F, which is determined by the mutual 

information among them, is given by 

QI (F) =
1
F 2 MI( fi, f j )

fi , f j∈F
∑

           

    (1) 

The relevance of the features in F with the class label l is computed as  

RI (F) =
1
F

MI(l, fi )
fi∈F
∑                   (2) 

The maximally relevant and minimally redundant set of feature F* among all sets 
F’ in F is obtained by optimizing (1) and (2) as follows: 

F* = argmaxF '⊆F[RI (F)−QI (F)]         (3) 

2.2   Our proposal 

Many authors worked on ranking SVM using weights from linear SVM (support 
vector machines) and obtained good performances [13]. That’s why, in our method 
SFS-mRMR, we use the metric given by the authors in [14] which combines linear 
support vector machines and the mRMR criterion to rank the features for better 
results. Let β  ∈ [0, 1] determines the tradeoff between SVM ranking and mRMR 

ranking. The relevancy iFR ,  
of feature fi in the F set in classification is given by 

RF,i =
1
F

MI(l, fi )
l
∑                   (4) 

And QF,i  the redundancy of feature fi in the set F in classification is given by 

QF,i =
1
F 2 MI( fi, f j )

fi , f j∈F
∑              (5) 

Let ωi denotes the SVM weight of the feature fi . 
For i-th feature, the ranking measure di  is given by  
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di = β ωi + (1−β)
RF,i
QF,i

                (6) 

3   Our algorithm 

Our proposed algorithm, called SFS_mRMR, is a feature selection method based on 
Spark, a parallel programming framework. Let S refer to the input dataset (with n 
features and m instances) and K the number of features to return. Let β be the tradeoff 
between SVM ranking and mRMR ranking, and x number of partitions for the dataset. 
F denotes the features space. The output S’ will be the optimal subset of K features 
with max di  score. 

Our algorithm follows seven steps: 
§ Step 1: create x partitions of features 

1. Construct labels={ 1l ,.., ml } the set of the class 
label in each instance of the dataset.  

2. Construct values={{ 1
iv ,.., m

iv }, i=1 to n }  

values represents the set of values vi
j  for each feature 

fi in each instance Ij: 
3. Construct x subspaces of features SFt, t = 1..x from 

the entire feature space F. 

4. Construct x subspaces subt of {{
1
iv ,.., m

iv },  i SF} 
5. Each subt will be sent to a unique worker (among the 

x workers). 
§ Step 2: associate features by two with labels 
On each worker t: 
6. Create several sets for each feature fi in subt by 

mapping fi with each other feature fj in F as follows: 

fi=>{ fi, {
1
iv ,.., m

iv }, { 1
jv ,.., m

jv } , { 1l ,.., ml }} 

We call the set {fi, { 1
iv ,.., m

iv },  { 1
jv ,.., m

jv }, 

{ 1l ,.., ml }, i=1 to n, j=1 to m } obtained rdd2. 

 
§ Step 3: calculate the mutual information between 

features and the relevance of each feature 
In this step, we use each element of rdd2 to calculate 

mutual information ijM between each feature fi and another 

feature fj of F. We compute also the relevance Ri (mutual 
information with his class label) of fi. We proceed as 
follows: 

Foreach element e ⊂  rdd2 
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7. rdd [(fi, ijM , Ri)] = mapToPair (e=>{ fi, ijM , Ri }) 

   ijM  = MutualInformation ({ 1
iv ,.., m

iv }, { 1
jv ,.., m

jv }) 

Ri= MutualInformation ({
1
iv ,.., m

iv }, { 1l ,.., ml }) /n 

where lk∈1..m represents the label of class in instance Ik.. 
EndForeach 
The constituted set of each feature fi, its mutual 

information with another feature fj and its mutual 
information Ri with the class label will be called rdd3. 

§ Step 4 : aggregate the mutual information for each 
feature by summing them. 

In order to obtain the redundancy of each feature fi, 
sum its mutual information with the other features of F 
and keep the mutual information with the class label (for 
the relevance). A new set is then obtained and we call it 
rdd4. Each element in rdd4 consists of {fi, sumMij , Ri}, 

where fi is the feature, ijsumM is the sum of mutual 

information between fi and the other features of the space 
of features F and Ri the mutual information between fi and 
the class label. 
This corresponds to the following instructions: 

Foreach element (fi, ijM , Ri ) rdd3 

8. rdd [(fi, ijsumM , Ri )]= reduceByKey (_+_) 

ijsumM = ∑
=

n

i
ijM

1

  

EndForeach 
§ Step 5: for each feature, compute the SVM weight 
In this step compute for each feature fi its SVM 
weight ωi  as follows: 

Foreach fi F 
9. rdd [(fi, 

ωi )]= map (fi =>{ fi, ωi }) 
 

ωi  ω  where ω =SVMWeight(F) 
EndForeach 
 

§ Step 6: for each feature, compute the rapport di  
between relevance and redundancy  
In this step calculate for each feature fi the ranking 

measure di  that represents a tradeoff between the 
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redundancy and the relevance of fi. Then send all di  
values to the master.  
This is done as follows: 

Foreach element (fi, ijsumM , Ri) rdd4 

10. rdd [(fi,di )]= mapToPair ({fi, sumMij , Ri } =>{fi, di  
}) 

Qi= ijsumM /(n*n); 

di  =β + ωi +((1-β)* (Ri /Qi)); 

/* ωi is the SVM weight of attribute fi*/ 
EndForeach 
11. All workers send di  to the master 
§ Step 7: Choose the best features in F 
Finally, master collects, orders and returns the K 

features with the best scores di . This corresponds to the 
following sentences: 
On the master:  
12. Collect and take ordered  
13. Return S’: optimal subset of K features in S with 

highest scores di . 

4 Experimental setup and results 

4.1   Data Description 

 
We used support vector machine as classifier and LibSVM as the support vector 
machine tool. 

We used two benchmark real-world datasets chosen from mldata.org [15]. Some 
informations of those datasets are presented in Table 1.  

TABLE 1.  CHARACTERISTICS OF BENCHMARK DATASETS 

NAME NUMBER 
OF FEATURES 

NUMBER OF INSTANCES 

COLON-CANCER 2000 62 

COLON-TUMOR 2000 60 

 
The experiments were performed on a cluster consisting of 4 nodes, where each 

node has 8 cores running at 2.60 GHz, with 56 GB memory and a 382 GB disk, then 
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on a cluster of 6nodes with the sames parameters. The computing nodes are all 
running at the linux.   

4.2   Experimental Results 

In this part, we will first discuss the scalability of our solution then we will compare 
the execution time of our proposal with the one of centralized mRMR. 

Figures 1, 2 and 3 show respectively how the execution time varies according to 
the number of nodes when we select 25%, 50% or 75% of the dataset. 

 
Figure 1. Scalability of SFS_mRMR and  classical mRMR with 25%. 

 

Figure 2. Scalability of SFS_mRMR and  classical mRMR with 50%. 
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Figure 3. Scalability of SFS_mRMR and  classical mRMR with 75%. 

The concerned figures clearly show that the execution time of our proposal 
considerably decreases when the number of nodes increases whereas the time taken 
by classical mRMR remains constant.   

We have used 4 then 6nodes for the scalability. And for every case we have run the 
tests using the same environment. 

For every dataset we first select 25% then 50% and after 75% of features. 
ü Colon-cancer 

Figure 4 and figure 5 shows the time taken by our method comparatively to the one 
of centralized mRMR for respectively 4 and 6nodes. 

 
 

 
Figure 4. Time taken for colon-cancer with 4nodes 
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Figure 5.  Time taken for colon-cancer with 6nodes 

As we can notice, the execution time of our method is at least 4 times shorter 
compared to the one of centralized mRMR. 

ü Colon-Tumor 
For colon-tumor the results obtained with 4nodes are the following ones given in 

figure 6: 

 
Figure 6. Time taken for colon-tumor with 4nodes 

With a cluster of 6nodes the execution time is stated in figure 7. 
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Figure 7. Time taken for colon-tumor with 6nodes 

As for the colon-cancer we can notice that the execution time of our method SFS-
mRMR is also 4times shorter at least. 

Therefore, we can conclude from these experiments that our solution outperforms 
the centralized mRMR method in terms of execution time. Moreover, the more we 
increase the number of nodes, the shorter the execution time becomes in our method 
whereas the one of centralized mRMR remains constant. 

In our experiments we have used datasets limited to 2000 features, because beyond 
that number, the centralized mRMR takes too much time to run. For example, for 
certain datasets above 2000 mRMR can take days to run completely. 

5   Conclusion 

In this paper, we have proposed a parallel and scalable version of a centralized feature 
selection method named mRMR. Our proposal was developed on Spark an in-
memory parallel computing framework specialized in computation for large 
distributed datasets.  

In our method, a score is given to each feature to evaluate its redundancy with the 
others features of the dataset and its relevance relatively to the class label. Then the 
features presenting the highest score are returned. 

Experimental results demonstrates that our algorithm achieves a great performance 
improvement in scaling well and reduces the time taken by mRMR for selecting 
relevant and non redundant features. 

In the future, we plan to parallelize many other centralized feature selection 
methods like relief or rfe-svm. 
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