
Publication pour la présente candidature LAFPT

Titre LSIS: Large Scale Instance Selection Algorithm for Big Data

Auteurs Reine Marie Ndéla Marone ; Fodé Camara ; Samba Ndiaye

Référence 2017 3rd IEEE International Conference on Computer and Communications
(ICCC)

Editeur IEEE

Pages 2353 – 2356

Année 2018

DOI 10.1109/CompComm.2017.8322955

URL https://ieeexplore.ieee.org/document/8322955/

Index https://www.scopus.com/authid/detail.uri?authorId=6701604512

ISBN 978-1-5090-6352-9

Encadreur Oui

Extrait
d’une thèse

Oui

LSIS: Large Scale Instance Selection Algorithm for Big Data

Reine Marie Marone
1
, Fodé Camara

2
, Samba Ndiaye

1

1
Department of mathematics, Cheikh Anta Diop University, Dakar, Senegal
2
Departement of mathematics, Alioune Diop University, Bambey, Senegal

e-mail: fode.camara@uadb.edu.sn, reine.marie.marone@ucad.edu.sn

Abstract—Recently enormous volumes of data are generated in

Information Systems, and data mining area is facing new

challenges of transforming this “big data” into useful

knowledge. To get from “big data” a manageable volume, we

propose a large scale instance selection for reducing the initial

dataset, leading to a reduction of both time taken and the

computational resources that are necessary for performing the

learning process, and improving the accuracy of classifier

model. Our experimental results demonstrated that the

proposed algorithms could scale well and efficiently process

large datasets by selecting relevant instances for classification

problem. The experimental results show also the contribution

of the instance selection on the classification accuracy.

Keywords- instance selection; big data; parallel computing;

apache sparkTM

I. INTRODUCTION

Instance selection is an important data pre-processing
issue for data mining especially with the context of big data
where applications deal with very extremely large datasets.
Big data can be defined as high volume, velocity and variety
of data that has the potential to be mined for information, and
require a new high-computational infrastructure to ensure
successful data processing and analytics. Several frameworks
for large-scale processing have tried to face the big data
issues in last decade. Among them we can cite, Apache
Hadoop and Apache SparkTM that are the two so popular
big data frameworks. To get from “big data” a manageable
volume, pre-processing task such as instance selection can be
very crucial. However standard algorithms for instance
selection are not suitable for Hadoop or Spark frameworks
and must be re-designed (sometimes, entirely) to learn from
large-scale datasets. That presents a big challenge for
researchers, and for this reason we propose a new large-scale
instance selection that we called LSIS (for Large Scale
Instance Selection), using the Apache SparkTM.

The rest of the paper is organized as follows. Section II
gives some preliminaries. Section III discusses related works.
In section IV, we give the details of our proposition. In
Section V, we evaluate the performance of our algorithm.
Section VI concludes the paper and gives some future works.

II. PRELIMINARIES

A. Instance selection

Generally there are noisy or superfluous instances in
datasets and therefore it is necessary to remove these

instances. Instance selection methods allow reducing the size
of data by removing irrelevant instances in order to improve
the performance of an instance-based learning algorithm. In
instance-based classifiers, instance selection techniques must
be able to reduce training time of a classifier and obtain the
same or even better classification rates than those achieved
using the full data set [14].Classical instance selection
methods can be divided into two: wrapper and filter.
Wrapper techniques perform instance selection using a
classification model and depend on accuracy achieved by the
classifier. Separated test are performed in the blocks of
instances of the dataset by training a model. Finally the
accuracy of each model is evaluated and the subset with the
high accuracy is selected [14]. Filter-based instance are
usually not tailored to a classifier. These methods evaluated
instances according to heuristics based on over all data
characteristics in order to identify instances that can be safely
removed from training data [14]. Filter-based instance
selection techniques are typically faster than wrapper based
techniques. Additional, filters are more general than
wrappers and are closely coupled with a learning algorithm
[14]. This is the reason why we propose in this paper a filter-
based instance selection.

B. Spark Parallel Computing Framework

Apache SparkTM is an open-source cluster-computing
framework. In contrast to Hadoop’s disk-based MapReduce
model, Spark's in-memory primitives provide performance
up to 10 times faster for certain data mining applications [13].
By allowing user programs to load data into a cluster's
memory and analyze it iteratively, Apache SparkTM is well
suited to data mining algorithms, which are often iterative.
Apache SparkTM requires a cluster manager and a
distributed storage system. For distributed storage, Apache
SparkTM can interface with a wide variety of systems,
including Hadoop Distributed File System (HDFS),
Cassandra and Amazon S3 [13].

Apache Spark comes with high-level APIs in Java, Scala
and Python, and recently R.

Figure 1.Apache Spark API’s.

2017 3rd IEEE International Conference on Computer and Communications

2353978-1-5090-6351-2/17/$31.00 ©2017 IEEE

It also supports a rich set of higher-level tools, including

MLlib, a machine learning library that provides various

algorithms designed to scale out on a cluster for

classification, regression, clustering, collaborative filtering,

and so on.

C. Spark Programming Model

Spark use MapReduce paradigm that is a programming

model and has an interesting benefit for big data applications

because it simplifies the processing of massive volumes of

data through its efficient and cost-effective mechanisms.

Map-Reduce programming model is composed of two

subsequent methods that handle data computations: (i) the

Map function and (ii) the Reduce function [15].

D. Architecture of Spark

Apache Spark uses master/worker architecture and has a

cluster manager that dispatches work for the cluster[16]. A

spark cluster has a single coordinator called master and

several slaves/workers. The driver program that runs on the

master node of the spark cluster schedules the job execution

and negotiates with the cluster manager. Worker is running

spark instance where is created a distributed agent

responsible for the execution of tasks called executor.

Executor runs several individual tasks in a given Spark job.

Figure below illustrates the architecture of Apache Spark

Cluster.

Figure 2. Architecture of Apache Spark Cluster.

III. RELATED WORKS

Instance reduction is an important task in the data

preparation phase of data mining. In the literature, various

approaches for instances reduction have been proposed.

According to the strategy used, we can divide the instance

selection methods into two groups: (i) supervised instances

filters and (ii) unsupervised instances filters. [1] gives a

comparative study of them. The main drawback of instance

selection methods is their computational complexities that

are generally quadratic O(n
2
), where n is the number of

instances [2]; thus, the majority of them are impracticable in

datasets with many thousands of instances as in big data

context [2].

TABLE I: SUMMARY ON STATE-OF-THE-ART OF NON PARALLEL INSTANCE

SELECTION METHODS

Algorithm Year Reference

CDIS 2016 [5]

LSBo 2015 [7]

LDIS 2015 [6]

SV-kNNC 2006 [8]

CNN 1968 [3]

Another drawback is related to the fact that most of the

instance selection algorithms are tailored for nearest

neighbor classifier, so the instances selected with these

algorithms are often only suitable for nearest neighbor

classifiers.

To deal with big data, novels proposals were presented

recently in. [8] [9] [10]. All these large-scale algorithms [8]

[9] [10] develop the same idea; get manageable volume

from big data by reducing the memory required to store the

data, and therefore accelerating the classification algorithms.

TABLE II: SUMMARY ON STATE-OF-THE-ART OF PARALLEL INSTANCE

SELECTION METHODS
Large scale Algorithm Year Reference

MRDIS 2017 [9]

MRVIS 2016 [10]

MRPR 2015 [11]

IV. OUR PROPOSAL

A. Problem definition

To address the data explosion issues, we propose both

scale-up and data reduction algorithm. We can formalize this

as follows: Let D be a massive training set with a big number

of instances, our Large-Scale Instance Selection algorithm

consists to find a subset S of instances from D such as f(S) ≥

f(D) using Map-reduce, the well-known paradigm of parallel

computing. Notice that f represents the SVM classifier model.

B. The LSIS algorithm

SVM is one of the top picks in data mining and has been
used successfully to classify linearly separable and
nonlinearly separable data with high accuracy. In the
literature many studies reveal that rank features using SVM
models yields good performances. For this reason, in LSIS
algorithm we combine Support vector machine (SVM) with
our criterion to score the instances in order to get better
results.

LSIS algorithm can be broken into three steps:
In step 1: For each instance, each element encountered in

the instance will be associated with the value 1. The value 1
means that the attribute was encountered once in the instance.
This corresponds to the following statement of the algorithm:

Foreach instance line Ii I

Foreach ai in instance line

 mapToPair(ai =>(ai,1))

EndForeach

EndForeach

Then for each element ai, the sum of the obtained values

1 is computed in order to get the total number of appearance

2354

of ai in the data set (frequency of the element). It represents a
reduce operation under spark which is done as follows:

rdd [(ai, fi)] = reduceByKey(_+_)
It is also used to calculate the maximum frequency of

each element as follows:
rdd[(ai,fmax)]=rdd[(ai, fi)].

reduceByKey(math.max(_, _))
In Step 2:The weight vector of svm classifier is first

computed,and the score of each instance is calculated as
follows:

Score (Ij)=


m

i 1

 (wi / norm(w))/[(fi)max-fi)]

Where wi, norm(w), fi and fmax represents respectively the
weight of the attribute ai, the norm of weight vector w, the
frequency of the ith-attribute of instance Ij, and the maximal
frequency of the ith-attribute values.
Each instance Ii is mapped to the pair (Ij, score):

mapToPair(Ij =>(Ij,score))

In Step 3: Finally, the workers send the pairs (Ii, score)
to the master that returns the k instances with the best score.

Algorithm LSIS
Input: Dataset D (with n instances and m attributes)

Output:k best inliers
Begin
/*First step*/
Map begin

1:I=flatmap(line=>f.getInstance())
2:Foreach instance line Ii I

3: Foreach ai in instance line
4: mapToPair (ai=>(ai,1))
5: EndForeach
6:EndForeach

End.
Reduce begin

rdd [(ai, f)] = reduceByKey(_+_)
rdd[(ai,fmax)]=rdd[(ai, fi)].reduceByKey(math.max(_, _))

End
/*Second step*/
Map begin
Foreach instance line Ii I
 mapToPair(Ii=>(Ii,score)) where

 score=


m

i 1

 (wi / norm (w))/(fmax-fi)

EndForeach
End

Return select instances according to the k highest scores
End.

V. PERFORMANCE EVALUATION

The experiments were performed on a cluster consisting
of 4 workers nodes and one head node. The head node has 2
cores Intel® Xeon® E5 processors running at 2.60 GHz,
with 28 GB memory and a 200 GB disk. And each worker
node has 4 cores Intel® Xeon® E5 processors running at
2.60 GHz, with 14 GB memory and 200 GB disk. The

computing nodes are all running at the Linux-based
HDInsight (Spark) cluster and HDI 3.3.

We used two benchmark real-world big data sets chosen
in [12] and some statistics of those datasets are presented in
Table III.

TABLE III. CHARACTERISTICS OF BENCHMARK DATASETS

Name |I| |a|

real-sim 72,309 20,958

kddb-raw-libsvm 19, 264,097 1, 163,024

Table 3: Characteristics of benchmark datasets

In our experimentations, we focus on two evaluation

measures: accuracy and scalability.

A. Accuracy Evaluation

We evaluated the accuracy according to the instances
reduction percentage. Table 4 and Figure 3 show that LSIS
can improve the classification accuracy. We use 10-fold
cross validation to evaluate the effectiveness of selected
features using SVM classifier.

What is especially remarkable is that for all datasets, the
classification accuracy is much better for a subset of 50
percent of instances.

TABLE IV: CLASSIFIER ACCURACY ACCORDING TO THE PERCENTAGE

OF INSTANCE REDUCTION

%
reduction

Classifier Accuracy

kdd-libsvm real-sim

100 0,8606 0,8923

70 0,8620 0,9243

60 0,8638 0,9263

50 0,8644 0,9260

Figure 3.Classifier accuracy according to the percentage of instance

reduction

B. Scalability Evaluation

After discussing the performance of our
proposition in terms of classification accuracy, we
evaluate the scalability of our algorithm by

2355

proportionally increasing the number of nodes
while keeping the same conditions to perform.

Figure 4. Scalability evaluation

The performance results demonstrate that our solution
offers good computational efficiency. The time of selecting
features decreases significantly when the number of nodes
increases. That reveals logarithmic behavior as the number
of cores increased.

VI. CONCLUSION

The large amount of data that is available in any research
field poses new problems for data mining methods. In this
paper, we presented a novel large-scale instance selection for
getting manageable volume from them by selecting the
relevant instances. We demonstrated that the proposed
algorithm can scale well and efficiently process large
datasets. We also found that our instance selection algorithm
can improve the SVM classifier. In the future, we plan to
compare our algorithm to the existing ones.

ACKNOWLEDGMENT

We have recipient of a Microsoft azure sponsored
account. We would like to thanks Microsoft for this
opportunity that have helped us to evaluating the
performance of our algorithm. Without their Apache Spark
cluster, we would never have made it to this point.

REFERENCES

[1] S. Garcia, J. Derrac, J. Cano, F. Herrera. Prototype selection for

nearest neighbor classification: Taxonomy and empirical study.
Pattern Anal. Mach. Intell. IEEE Trans., 34 (3) (2012), pp. 417–435
http://dx.doi.org/10.1109/TPAMI.2011.142

[2] Á. Arnaiz-González, J.-F. Díez-Pastor, J.J. Rodríguez, C. García-
Osorio. Instance selection of linear complexity for big data. Knowl.
Based Syst., 000 (2016), pp. 1–13.

[3] P. Hart. The condensed nearest neighbor rule (corresp.). Inf. Theor.
IEEE Trans., 14 (3) (1968), pp. 515–516

[4] E. Leyva, A. González, R. Pérez. Three new instance selection

methods based on local sets: a comparative study with several

approaches from a bi-objective perspective. Pattern Recognit., 48
(4) (2015), pp. 1523–1537.
http://dx.doi.org/10.1016/j.patcog.2014.10.001

[5] Carbonera, Joel Luis, and Mara Abel. A novel density-based

approach for instance selection. IEEE 28th International
Conference on Tools with Artificial Intelligence (ICTAI), 2016.

[6] Carbonera, Joel Luis, and Mara Abel. A density-based approach for

instance selection. IEEE 27th International Conference on Tools with
Artificial Intelligence (ICTAI), 2015.

[7] E. Leyva, A. González, and R. Pérez, Three new instance selection

methods based on local sets: A comparative study with several

approaches from a bi-objective perspective, Pattern Recognition,
vol. 48, no. 4, pp. 1523–1537, 2015.

[8] Srisawat, A., Phienthrakul, T., Kijsirikul, B. SV-kNNC: An

Algorithm for Improving the Efficiency of k-Nearest Neighbor.

PRICAI’06 proceedings of the 9th Pacific Rim international
conference on Artificiel Intelligence. Guilin, China — August 07 - 11,
2006.

[9] Álvar Arnaiz-González, Alejandro González-Rogel, José-Francisco
Díez-Pastor, Carlos López-Nozal. MR-DIS: democratic instance

selection for big data by MapReduce. Artificial Intelligence (2017),
pp. 1-9, doi:10.1007/s13748-017-0117-5.

[10] Junhai Zhai, Xizhao Wang, Xiaohe Pang. Voting-based instance

selection from large data sets with MapReduce and random

weight networks. Information Sciences. Volumes 367-368, Pages
1066-1077.

[11] Isaac Trig ero aniel Peralta a me acardit al ador arc a,
Francisco Herrera, MRPR: A MapReduce solution for prototype

reduction in big data classification.Neuro Computing, Volume 150,
Part A, 20 February 2015, Pages 331–345.

[12] Chih-Chung Chang and Chih-Jen Lin. LIBSVM Data: Classification

(Binary Class).
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

[13] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:

A fault-tolerant abstraction for in-memory cluster computing.
Technical Report UCB/EECS-2011-82, EECS Department, University
of California, Berkeley, July 2011.

[14] Andronicus A. Akinyelu and Aderemi O. Adewumi.Improved

Instance Selection Methods for Support Vector Machine Speed

Optimization.Security and Communication Networks,Volume 2017
(2017), Article ID 6790975, 11 pages.

[15] Kyong-Ha Lee, Bongki Moon, Yoon-Joon Lee, Hyunsik Choi, Yon
Dohn Chung.Parallel Data Processing with MapReduce: A
Survey.SIGMOD Record, December 2011 (Vol. 40, No. 4).

[16] Priya Dahiya

1

, Chaitra.B

2

and Usha Kumari. Survey on Big Data

using Apache Hadoop and Spark.International Journal of
Computer Engineering In Research Trends, 4(6):pp:195-201,June -
2017.

2356

http://dx.doi.org/10.1109/TPAMI.2011.142
http://dx.doi.org/10.1016/j.patcog.2014.10.001
http://dx.doi.org/10.1007/s13748-017-0117-5
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.hindawi.com/79359146/
https://www.hindawi.com/50987171/

ICCC 2017

Theory and Technology of Data

Engineering

