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Abstract—Recently enormous volumes of data are generated in 

Information Systems, and data mining area is facing new 

challenges of transforming this “big data” into useful 

knowledge. To get from “big data” a manageable volume, we 

propose a large scale instance selection for reducing the initial 

dataset, leading to a reduction of both time taken and the 

computational resources that are necessary for performing the 

learning process, and improving the accuracy of classifier 

model. Our experimental results demonstrated that the 

proposed algorithms could scale well and efficiently process 

large datasets by selecting relevant instances for classification 

problem. The experimental results show also the contribution 

of the instance selection on the classification accuracy. 

Keywords- instance selection; big data; parallel computing; 

apache sparkTM 

I.  INTRODUCTION  

Instance selection is an important data pre-processing 
issue for data mining especially with the context of big data 
where applications deal with very extremely large datasets. 
Big data can be defined as high volume, velocity and variety 
of data that has the potential to be mined for information, and 
require a new high-computational infrastructure to ensure 
successful data processing and analytics. Several frameworks 
for large-scale processing have tried to face the big data 
issues in last decade. Among them we can cite, Apache 
Hadoop and Apache SparkTM that are the two so popular 
big data frameworks. To get from “big data” a manageable 
volume, pre-processing task such as instance selection can be 
very crucial. However standard algorithms for instance 
selection are not suitable for Hadoop or Spark frameworks 
and must be re-designed (sometimes, entirely) to learn from 
large-scale datasets. That presents a big challenge for 
researchers, and for this reason we propose a new large-scale 
instance selection that we called LSIS (for Large Scale 
Instance Selection), using the Apache SparkTM. 

The rest of the paper is organized as follows. Section II 
gives some preliminaries. Section III discusses related works. 
In section IV, we give the details of our proposition. In 
Section V, we evaluate the performance of our algorithm. 
Section VI concludes the paper and gives some future works. 

II. PRELIMINARIES 

A. Instance selection 

Generally there are noisy or superfluous instances in 
datasets and therefore it is necessary to remove these 

instances. Instance selection methods allow reducing the size 
of data by removing irrelevant instances in order to improve 
the performance of an instance-based learning algorithm. In 
instance-based classifiers, instance selection techniques must 
be able to reduce training time of a classifier and obtain the 
same or even better classification rates than those achieved 
using the full data set [14].Classical instance selection 
methods can be divided into two: wrapper and filter. 
Wrapper techniques perform instance selection using a 
classification model and depend on accuracy achieved by the 
classifier. Separated test are performed in the blocks of 
instances of the dataset by training a model. Finally the 
accuracy of each model is evaluated and the subset with the 
high accuracy is selected [14]. Filter-based instance are 
usually not tailored to a classifier. These methods evaluated 
instances according to heuristics based on over all data 
characteristics in order to identify instances that can be safely 
removed from training data [14]. Filter-based instance 
selection techniques are typically faster than wrapper based 
techniques. Additional, filters are more general than 
wrappers and are closely coupled with a learning algorithm 
[14]. This is the reason why we propose in this paper a filter-
based instance selection. 

B. Spark Parallel Computing Framework 

Apache SparkTM is an open-source cluster-computing 
framework. In contrast to Hadoop’s disk-based MapReduce 
model, Spark's in-memory primitives provide performance 
up to 10 times faster for certain data mining applications [13]. 
By allowing user programs to load data into a cluster's 
memory and analyze it iteratively, Apache SparkTM is well 
suited to data mining algorithms, which are often iterative. 
Apache SparkTM requires a cluster manager and a 
distributed storage system. For distributed storage, Apache 
SparkTM can interface with a wide variety of systems, 
including Hadoop Distributed File System (HDFS), 
Cassandra and Amazon S3 [13]. 

Apache Spark comes with high-level APIs in Java, Scala 
and Python, and recently R. 

 
Figure 1.Apache Spark API’s. 
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It also supports a rich set of higher-level tools, including 

MLlib, a machine learning library that provides various 

algorithms designed to scale out on a cluster for 

classification, regression, clustering, collaborative filtering, 

and so on.  

C. Spark Programming Model 

Spark use MapReduce paradigm that is a programming 

model and has an interesting benefit for big data applications 

because it simplifies the processing of massive volumes of 

data through its efficient and cost-effective mechanisms. 

Map-Reduce programming model is composed of two 

subsequent methods that handle data computations: (i) the 

Map function and (ii) the Reduce function [15]. 

D. Architecture of Spark 

Apache Spark uses master/worker architecture and has a 

cluster manager that dispatches work for the cluster[16]. A 

spark cluster has a single coordinator called master and 

several slaves/workers. The driver program that runs on the 

master node of the spark cluster schedules the job execution 

and negotiates with the cluster manager. Worker is running 

spark instance where is created a distributed agent 

responsible for the execution of tasks called executor. 

Executor runs several individual tasks in a given Spark job.  

Figure below illustrates the architecture of Apache Spark 

Cluster. 

 
Figure 2. Architecture of Apache Spark Cluster. 

III. RELATED WORKS  

Instance reduction is an important task in the data 

preparation phase of data mining. In the literature, various 

approaches for instances reduction have been proposed. 

According to the strategy used, we can divide the instance 

selection methods into two groups: (i) supervised instances 

filters and (ii) unsupervised instances filters. [1] gives a 

comparative study of them. The main drawback of instance 

selection methods is their computational complexities that 

are generally quadratic O(n
2
), where n is the number of 

instances [2]; thus, the majority of them are impracticable in 

datasets with many thousands of instances as in big data 

context [2]. 

 
TABLE I: SUMMARY ON STATE-OF-THE-ART OF NON PARALLEL INSTANCE 

SELECTION METHODS 

Algorithm Year Reference 

CDIS 2016 [5] 

LSBo 2015 [7] 

LDIS 2015 [6] 

SV-kNNC 2006 [8] 

CNN 1968 [3] 

 
Another drawback is related to the fact that most of the 

instance selection algorithms are tailored for nearest 

neighbor classifier, so the instances selected with these 

algorithms are often only suitable for nearest neighbor 

classifiers.  

To deal with big data, novels proposals were presented 

recently in. [8] [9] [10]. All these large-scale algorithms [8] 

[9] [10] develop the same idea; get manageable volume 

from big data by reducing the memory required to store the 

data, and therefore accelerating the classification algorithms. 

 
TABLE II: SUMMARY ON STATE-OF-THE-ART OF PARALLEL INSTANCE 

SELECTION METHODS 
Large scale Algorithm Year Reference 

MRDIS 2017 [9] 

MRVIS  2016 [10] 

MRPR 2015 [11] 

IV. OUR PROPOSAL 

A. Problem definition 

To address the data explosion issues, we propose both 

scale-up and data reduction algorithm. We can formalize this 

as follows: Let D be a massive training set with a big number 

of instances, our Large-Scale Instance Selection algorithm 

consists to find a subset S of instances from D such as f(S) ≥ 

f(D) using Map-reduce, the well-known paradigm of parallel 

computing. Notice that f represents the SVM classifier model. 

B. The LSIS algorithm 

SVM is one of the top picks in data mining and has been 
used successfully to classify linearly separable and 
nonlinearly separable data with high accuracy. In the 
literature many studies reveal that rank features using SVM 
models yields good performances. For this reason, in LSIS 
algorithm we combine Support vector machine (SVM) with 
our criterion to score the instances in order to get better 
results.  

LSIS algorithm can be broken into three steps: 
In step 1: For each instance, each element encountered in 

the instance will be associated with the value 1. The value 1 
means that the attribute was encountered once in the instance. 
This corresponds to the following statement of the algorithm: 

 

Foreach instance line Ii  I 

Foreach ai in instance line 

 mapToPair(ai =>(ai,1)) 

EndForeach 

EndForeach 

 
Then for each element ai, the sum of the obtained values 

1 is computed in order to get the total number of appearance 
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of ai in the data set (frequency of the element). It represents a 
reduce operation under spark which is done as follows: 

rdd [(ai, fi)] = reduceByKey(_+_) 
It is also used to calculate the maximum frequency of 

each element as follows: 
rdd[(ai,fmax)]=rdd[(ai, fi)]. 

reduceByKey(math.max(_, _)) 
In Step 2:The weight vector of svm classifier is first 

computed,and the score of each instance is calculated as 
follows: 

Score (Ij)=


m

i 1

 (wi / norm(w))/[ (fi)max-fi)]  

Where wi, norm(w), fi and fmax represents respectively the 
weight of the attribute ai, the norm of weight vector w, the 
frequency of the ith-attribute of instance Ij, and the maximal 
frequency of the ith-attribute values. 
Each instance Ii is mapped to the pair (Ij, score): 

mapToPair(Ij =>( Ij,score)) 

In Step 3: Finally, the workers send the pairs (Ii, score) 
to the master that returns the k instances with the best score. 

 

Algorithm LSIS 
Input: Dataset D (with n instances and m attributes) 

Output:k best inliers 
Begin 
/*First step*/ 
Map begin 

1:I=flatmap(line=>f.getInstance()) 
2:Foreach instance line Ii I 

3: Foreach ai in instance line 
4:  mapToPair (ai=>(ai,1)) 
5: EndForeach 
6:EndForeach 

End. 
Reduce begin 

rdd [(ai, f)] = reduceByKey(_+_) 
rdd[(ai,fmax)]=rdd[(ai, fi)].reduceByKey(math.max(_, _)) 

End 
/*Second step*/ 
Map begin 
Foreach instance line Ii I 
 mapToPair(Ii=>( Ii,score)) where 

 score=


m

i 1

 (wi / norm (w))/(fmax-fi)  

EndForeach 
End 

Return select instances according to the k highest scores 
End. 

V. PERFORMANCE EVALUATION 

The experiments were performed on a cluster consisting 
of 4 workers nodes and one head node. The head node has 2 
cores Intel® Xeon® E5 processors running at 2.60 GHz, 
with 28 GB memory and a 200 GB disk. And each worker 
node has 4 cores Intel® Xeon® E5 processors running at 
2.60 GHz, with 14 GB memory and 200 GB disk. The 

computing nodes are all running at the Linux-based 
HDInsight (Spark) cluster and HDI 3.3. 

We used two benchmark real-world big data sets chosen 
in [12] and some statistics of those datasets are presented in 
Table III. 

TABLE III.    CHARACTERISTICS OF BENCHMARK DATASETS 

Name |I| |a| 

real-sim 72,309 20,958 

kddb-raw-libsvm 19, 264,097 1, 163,024 

Table 3: Characteristics of benchmark datasets 

 
In our experimentations, we focus on two evaluation 

measures: accuracy and scalability.    

A. Accuracy Evaluation 

We evaluated the accuracy according to the instances 
reduction percentage. Table 4 and Figure 3 show that LSIS 
can improve the classification accuracy. We use 10-fold 
cross validation to evaluate the effectiveness of selected 
features using SVM classifier.  

What is especially remarkable is that for all datasets, the 
classification accuracy is much better for a subset of 50 
percent of instances.  

 
TABLE IV: CLASSIFIER ACCURACY ACCORDING TO THE PERCENTAGE 

OF INSTANCE REDUCTION 

% 
reduction 

Classifier Accuracy 

kdd-libsvm real-sim 

100 0,8606 0,8923 

70 0,8620 0,9243 

60 0,8638 0,9263 

50 0,8644 0,9260 

 

 
Figure 3.Classifier accuracy according to the percentage of instance 

reduction 
 

B. Scalability Evaluation 

After discussing the performance of our 
proposition in terms of classification accuracy, we 
evaluate the scalability of our algorithm by 
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proportionally increasing the number of nodes 
while keeping the same conditions to perform. 

 
Figure 4. Scalability evaluation 

 

The performance results demonstrate that our solution 
offers good computational efficiency. The time of selecting 
features decreases significantly when the number of nodes 
increases. That reveals logarithmic behavior as the number 
of cores increased.  

VI. CONCLUSION 

The large amount of data that is available in any research 
field poses new problems for data mining methods. In this 
paper, we presented a novel large-scale instance selection for 
getting manageable volume from them by selecting the 
relevant instances. We demonstrated that the proposed 
algorithm can scale well and efficiently process large 
datasets. We also found that our instance selection algorithm 
can improve the SVM classifier. In the future, we plan to 
compare our algorithm to the existing ones. 
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