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Abstract. Recently, privacy issues have becomes important in data
mining, especially when data is horizontally or vertically partitioned.
For the vertically partitioned case, many data mining problems can be
reduced to securely computing the scalar product. Among these prob-
lems, we can mention association rule mining over vertically partitioned
data. Efficiency of a secure scalar product can be measured by the over-
head of communication needed to ensure this security. Several solutions
have been proposed for privacy preserving association rule mining in ver-
tically partitioned data. But the main drawback of these solutions is the
excessive overhead communication needed for ensuring data privacy. In
this paper we propose a new secure scalar product with the aim to reduce
the overhead communication.

1 Introduction

Motivated by the multiple requirements of data sharing, privacy preserving and
knowledge discovery, Privacy Preserving Data Mining (PPDM) has been studied
extensively in data mining community. In many cases, multiple parties may wish
to share aggregate private data, without leaking any sensitive information at
their end. For example, different superstores with sensitive sales data may wish
to coordinate among themselves in knowing aggregate trends without leaking
the trends of their individual stores. This requires secure and cryptographic
protocols for sharing the information across the different parties. The data may
be distributed in two ways across different sites: horizontal partitioning where the
different sites may have different sets of records containing the same attributes;
and vertical partitioning where the different sites may have different attributes
of the same sets of records. For the vertically partitioned case, many primitive
operations such as computing the scalar product can be useful in computing
the results of data mining algorithms. For example, [1] uses the secure scalar
product over the vertical bit representation of itemset inclusion in transactions,
in order to compute the frequency of the corresponding itemsets. This key step
is applied repeatedly within the framework of a roll up procedure of itemset
counting. The efficiency of secure scalar products is important because they can
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generate excessive overhead communication. Several works have been carried
out on privacy preserving association rule mining for vertically partitioned data.
Most of them suffer from communication overhead. We challenge this drawback
by proposing a new secure scalar product protocol that reduce drastically the
communication cost between sites. This feature distinguishes our proposal from
the existing ones.

The remainder of this paper is organized as follows. Section 2 provides the
state-of-the-art in privacy preserving data mining. In Section 3, we present our
proposed approach and we give examples to illustrate the practicability of our
protocol. Evaluation of computation and communication costs of our protocol is
presented in Section 4. Section 5 discusses the security aspect of our proposal.
Section 6 evaluates this work by comparing it with related topics in the privacy
preserving association rule mining community. Finally, Section 7 concludes with
a discussion of the contributions of our proposal and our current research plans.

2 Privacy and Data Mining

The problem of privacy preserving data mining has become more important in
recent years because of the multiple requirements of data sharing, privacy pre-
serving and knowledge discovery. Two main problems are addressed in privacy
preserving data mining: the first one is the protection of sensitive raw data;
the second one is the protection of sensitive knowledge contained in the data,
which is called knowledge hiding in database. We can classify the techniques of
knowledge hiding in database in two groups: approaches based on data modifi-
cation and the approaches based on data reconstruction. The basic idea of data
reconstruction is to modify directly the original database D, to obtain a new
database D′. According to the way of modifying the original database we can
still push classification by distinguishing two families of techniques: techniques
based on the distortion and the techniques based on the blocking of the data.
The distortion changes a value of attribute by a new value [2] (i.e. change of value
1 in 0), while blocking [3], is the replacement of an existing value of attribute
by a special value noted by ”?”. However approaches based on data modifica-
tion cannot control the side effects. For example in association rule, hiding a
non sensitive rule Ri witch had confidence bigger than threshold minconf (i.e.
conf(Ri) > minconf), can give a new value such that conf(Ri) < minconf .
They also make many operations of I/O especially when the original database is
too large. Another solution concerns the approaches based on data reconstruc-
tion [4]. The basic idea of these approaches is to extract first the knowledge
K from the original database D. The new database D′ is then reconstructed
from K. The basic idea of data reconstruction is inspired by the recent problem
of Inverse Frequent Set Mining. Opposite approaches use techniques based on
data reconstruction that control directly the side effects. The main proposal to
solve the problem of the protection of sensitive raw data is the secure multi-
party computation. A Secure Multi-party Computation (SMC) problem deals
with computing any function on any input, in a distributed network where each
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participant holds one of the inputs, while ensuring that no more information
is revealed to a participant in the computation than can be inferred from that
participants input and output. Secure two party computation was first investi-
gated by Yao [5,6] and was later generalized to multi-party computation [7,8].
For example, in a 2-party setting, Alice and Bob may have two inputs x and y,
and may wish to both compute the function f(x, y) without revealing x or y to
each other. This problem can also be generalized across k parties by designing
the k argument function h(x1, ..., xk). Several data mining algorithms may be
viewed in the context of repetitive computations of many such primitive func-
tions like the scalar product, secure sum, and so on. In order to compute the
function f(x, y) or h(x1, ..., xk) a protocol will have to designed for exchanging
information in such a way that the function is computed without compromis-
ing privacy. The problem of distributed privacy preserving data mining overlaps
closely with a field in cryptography for determining secure multi-party compu-
tations. A broad overview of the intersection between the fields of cryptography
and privacy-preserving data mining may be found in [9]. Clifton et al. [10] give
a survey of multi-party computation methods.

3 Proposed Approach

3.1 Problem Definition

Scalar product is a powerful component technique. Several data mining problems
can essentially be reduced to securely computing the scalar product. To give an
idea of how a secure scalar protocol can be used, let us look at association rule
mining over vertically distributed data. The association rule mining problem can
be formally stated as follows [11]: Let I = {i1, ..., in} be a set of items. Let D be
a set of transactions, where each transaction T has an unique identifier TID and
contains a set of items, such that T ⊆ I. We say that a transaction T contains
X , a set of items in I, if X ⊆ T . An association rule is an implication of the
form X ⇒ Y , where X ⊆ I, Y ⊂ I, and X ∩ Y = ∅. The rule X ⇒ Y holds
in a database D with confidence c, if c% of transactions in D that contain X
tend to also contain Y . The association rule X ⇒ Y has support s in D, if s%
of transactions in D contain X ∪ Y . Within this framework, we consider mining
boolean association rules. The absence or presence of an attribute is represented
by a value taking from {0, 1}. Transactions are represented under the form of
strings of 0 and 1, while the database can be represented as a matrix of {0, 1}.
The association rule mining algorithm over vertically distributed databases is
based on the classic Apriori algorithm of Agrawal and Srikant [12]. The key issue
of this algorithm is the problem of finding the frequent itemsets in a database.
To determine if a given itemset is frequent or not, we count the number of
transactions, in D, where the values for all the attributes in this itemset are 1.
This problem can be transformed into a simple mathematical problem, using
the following definitions: Let l + m be the total number of attributes, where
Alice has l attributes, {A1, ..., Al}, and Bob has the remaining m attributes,
{B1, ...Bm}. Transactions are a sequence of l+m 1′s or 0′s. Let minsupp be the
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minimal support, and n the total number of transaction in database D. Let −→X
and −→Y be the columns in D, i.e., xi = 1 if row i has value 1 for item or attribute
X . The scalar product of two vectors −→X and −→Y of cardinality n is defined as
follows: −→X •−→Y =

∑n
i=1 xi×yi. Determining if the 2-itemset < XY > is frequent

can be reduced to test if −→X • −→Y ≥ minsupp. The generalization of this process
to a w-itemset is straightforward. Assume Alice has p attributes a1, ..., ap and
Bob has q attributes b1, ..., bq. We want to compute the frequency of the w-
itemset < a1...ap, b1...bq >, where w = p + q. Each item in −→X (respectively in−→
Y ) is composed of the product of the corresponding individual elements, i.e.,
xi =

∏p
j=1 aj (respectively yi =

∏q
j=1 bj).

Now, we can formalize our problem as follows: Assume that 2 parties, for
example Alice and Bob, such that each has a binary vector of cardinality n, e.g.−→
X = (x1, ..., xn) and −→Y = (y1, ..., yn). The problem is to securely compute the
scalar product of these two vectors, e.g. −→X • −→Y =

∑n
j=1 xi × yi.

3.2 Security Tools

To define our secure scalar product protocol, we have to use a semantically se-
cure additive homomorphic public-key cryptosystem. Indeed to ensure security
in data transmission, we chose a public-key cryptosystem. The security of a
public-key cryptosystem is determined by a security parameter k. For a fixed
k, it should take more than polynomial in k operations to break the cryptosys-
tem [13](Section 2). The public-key cryptosystem that have chosen is homomor-
phic. This choice is justified by the fact that, if given Enc(x) and Enc(y), one
can obtain Enc(x⊥y) without decrypting x, y for some operation ⊥. Further-
more, the homomorphic public-key cryptosystem is additive; that means that a
party can add encrypted plaintexts by doing simple computations with cipher-
texts, without having the secret key. Informally, this means that for probabilistic
polynomial-time adversary, the analysis of a set of ciphertexts does not give more
information about the cleartexts than what would be available without knowl-
edge of the ciphertexts. This property is very important in our binary context
because an attacker could always encrypt 0 and 1 by using the public key, and
then compare the resulting ciphertexts with the received message to decide the
value of a bit. One of the most efficient currently known semantically secure ho-
momorphic cryptosystems is Paillier cryptosystem [14]. This cryptosystem has
all the four properties described above. In Paillier’s case the plaintext space is
defined by P (sk) = ZN , with N ≥ 21024, e.g. N is a hard-to-factor modulus.

3.3 Algorithm

Before to give our proposed algorithm, we will suppose the following. First, Alice
generates a pair of key and a random value r and it computes Encpk(xi, r) which
she sends to Bob. This message is computationally indistinguishable from the
received message since the semantic security of the encryption system guarantees
that no extra information is revealed. She sends also the public key to Bob. Bob
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Algorithm 1. Private Scalar Product Protocol
Require: N=2 (number of sites; Alice and Bob), Alice vector:

−→
X = (x1, ..., xn), Bob

vector:
−→
Y = (y1, ..., yn)

1: for Alice do
2: Generates a pair of key (sk, pk);
3: Generates (Encpk(x1), ..., Encpk(xn)) using the public key pk;
4: Sends (Encpk(x1), ..., Encpk(xn)) to Bob;
5: end for
6: for Bob do
7: Computing

∏n
i=1 pi, where pi = Encpk(xi) if yi = 1 and pi = 1 if yi = 0

then uses the additive property of homomorphic encryption for computing∏n
i=1 pi = Encpk(

−→
X • −→Y );

8: Sends Encpk(
−→
X • −→Y ) to Alice;

9: end for
10: for Alice do
11: Computes Decsk(Encpk(

−→
X • −→Y ));

12: Sends the final result to Bob;
13: end for

uses the additive property of homomorphic encryption and computes
∏n

i=1 pi,
with pi = Encpk(xi) if yi = 1 otherwise pi = 1. A public-key cryptosystem is
additive homomorphic when Encpk(x1, r1)×Encpk(x2, r2)×...×Encpk(xn, rn) =
Encpk(x1 + x2 + ... + xn, r1 × r2 × ...× rn), where + is a group operation and
× is a groupoid operation. For the sake of simplicity of notations, we will not
explicitly include, in the rest of the paper, the randomness as an input of the
encryption functions. Then, in step 5, Bob sends Encpk(−→X •−→Y ) to Alice. Having
the secret key, Alice deciphers the final result what she sends to Bob. Now we
describe our proposed algorithm.

To illustrate the behavior of our algorithm, we consider the following first
scenario: we suppose that Alice has the vector −→X = (1, 0, 0, 1)T and Bob has−→
Y = (1, 0, 0, 1)T . We want to compute securely the scalar product of −→X •−→Y . We
obtain the following:

1. Alice view’s: Alice generates a pair of key (sk, pk); to do that it uses the
public key pk and generates (Encpk(x1), Encpk(x2), Encpk(x3), Encpk(x4)),
what she sends to Bob.

2. Bob view’s: Bob computes
∏n

i=1 pi, where p1 = Encpk(x1) (because y1 = 1),
p2 = 1, p3 = 1 and p4 = Encpk(x4). He uses the additive property of
homomorphic encryption to compute Encpk(x1)×Encpk(x4) = Encpk(x1 +
x4) = Encpk(−→X • −→Y ). Finally Bob sends Encpk(−→X • −→Y ) to Alice.

3. Alice view’s: Using the secret key, Alice computes Decsk(Encpk(−→X •−→Y )) and
sends the result to Bob.

As second scenario, we suppose that Alice has the vector −→X = (1, 1, 1, 1)T

and Bob has −→Y = (1, 1, 0, 1)T . As for the first scenario, We want to compute
securely the scalar product of −→X • −→Y . This computation gives:
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1. Alice view’s: Using the public key pk, Alice generates a pair of key (sk, pk);
then it generates (Encpk(x1), Encpk(x2), Encpk(x3), Encpk(x4)), what she
sends to Bob.

2. Bob view’s: Bob computes
∏n

i=1 pi, where p1 = Encpk(x1) (because y1 = 1),
p2 = Encpk(x2), p3 = 1 and p4 = Encpk(x4). Using the additive property of
homomorphic encryption, it computes Encpk(x1)×Encpk(x2)×Encpk(x4) =
Encpk(x1 + x2 + x4) = Encpk(−→X •−→Y ). Finally, Bob sends Encpk(−→X •−→Y ) to
Alice.

3. Alice view’s: Using the secret key, Alice computes Decsk(Encpk(−→X •−→Y )) and
sends the result to Bob.

In this second scenario, although Alice has a constant vector, Bob cannot
deduce in no manner this one. Semantic security guarantees that it is not possible
for Bob to distinguish between the encryption of a 0 or a 1 value, when r is
randomly chosen.

4 Computation and Communication Evaluation

From the communication view point, our protocol needs the following messages:
(i) for each entry of the vector, our protocol requires one message; (ii) one mes-
sage to send the public key; (iii) Bob needs to send Encpk(−→X • −→Y ) to Alice;
(iv) finally, Alice must send the result of the scalar product to Bob. Hence, the
number of messages is n+3, where n is the dimension of the vector. In this case
we obtain a total communication cost O(n). From the computation view point,
Alice performs, in our protocol, n encryptions and 1 decryption. Bob performs
less n− 1 additions. Therefore the computational complexity of our protocol is
linear, e.g. O(n).

5 Security Analysis

In this section, we will verify the security of our protocol. This security depends
on the semantic secure public-key cryptosystem used. A public-key cryptosystem
is semantically secure (IND-CPA secure) when a probabilistic polynomial-time
adversary cannot distinguish between random encryptions of two elements, cho-
sen by herself. Paillier [14] recalls the standard notion of security for public
key encryption schemes in terms of indistinguishability, or semantic security
as follows: We consider chosen-plaintext attacks (CPA), because homomorphic
schemes can never achieve security against chosen-ciphertext attacks. To de-
fine security, we use the following game that an attacker A plays against a
challenger:

(pk, sk)← KG(.)
(St, m0, m1)← A(find, pk)

b← {0, 1} at random; c∗ ← Encpk(mb)
b′ ← A(guess, c∗, St).
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The advantage of such an adversary A is defined as follows:

Adv(A) =| Pr[b′ = b]− 1
2 |.

A public key encryption scheme is said to be ε−indistinguishable under CPA
attacks if Adv(A) < ε for any attacker A which runs in polynomial time.

From this definition, it is quite obvious that the role of the randomness r is
crucial to ensure (semantic) security of a public key encryption scheme. In effect,
a deterministic scheme can never be semantically secure, because an attacker A
could always encrypt m0 and m1 by using pk, and then compare the resulting
ciphertexts with the challenge one c∗, to decide the value of the bit b.

At this step, we will now give a proof of security for the entire protocol.

Proof. To analyze security let us examine the information propagated by each
site taking part in the protocol. All propagated informations in our protocol can
be summarized as follows:

1. Alice’s view: In steps 1, 2 and 3, for each xi, i ∈ {1..n}, Alice generates a
random number r and computes Encpk(r, xi); the result of this computation
is sent to Bob.

2. Bob’s view: Bob receives Encpk(xi, r). This message is computationally in-
distinguishable from the received message since the semantic security of the
public key encryption system guarantees that no extra information is re-
vealed [14].

3. In step 4, Bob computes Encpk(−→X • −→Y ) =
∏

Encpk(xi) if yi = 1. The ho-
momorphic property of encryption system guarantees that this computation
does not reveal the values of xi∈{1..n}.

4. Then, in step 5, Bob sends Encpk(−→X • −→Y ) to Alice. The security of the
remaining stages is not important because the result of the scalar product
is not private.

6 Related Works

Let us reconsider the most popular secure scalar product in order to compare
them with our protocol. The protocol in [1] is an algebraic solution which uses a
matrix of decision of dimension n×n/2, where n is the dimension of the vectors.
Each part encrypts its vector using the matrix of decision. In first step, the pri-
mary site namely Alice, generates n/2 random values and performs n2 multiply
and addition operations. The responder site, namely Bob, performs n2 + 2 mul-
tiply and addition operations. Finally Alice performs n/2 multiply and addition
operations to obtain the final result. The protocol in [1] thus has a computational
complexity of O(n2). The communication cost is O(n), i.e. 3n/2+2 messages if we
consider that each entry of the vector requires a message. Therefore, the commu-
nication overhead is n/2+1. In [15], the authors proposed a secure scalar product
protocol based on relation 2

∑n
j=1 xiyi =

∑n
j=1 x2

i +
∑n

j=1 y2
i −

∑n
j=1(xi − yi)2.

In this protocol each site needs n messages towards the other for send his vec-
tor. Bob needs to send

∑n
j=1 y2

i , whereas Alice sends the result to Bob. In this
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case the communication cost is 2n + 2 and the communication overhead is n + 1
messages. In order to determine the computational overhead, we performed the
following analysis. Alice will compute

∑n
j=1 x2

i , and Bob will compute
∑n

j=1 y2
i

locally (i.e. 2n− 2 additions and 2n multiply operations). Then, we execute the
protocol Add Vectors Protocol which requires n permutations of values and n
encryptions. Finally, the computational complexity is O(n). If Alice has a con-
stant vector (i.e made up only of 1 values), Bob could deduce the values from
Alice. To solve this problem the authors in [15] propose that Alice generates a
random vector −→r that is added to her random vector −→X . Thus, even if Alice has
a constant vector −→X , the fact that −→r was randomly generated will ensure that
(−→X + −→r ) will be always a vector with non-equal values. Now, they can use the
scalar product protocol twice for computing (−→X + −→r ) • −→Y and −→r • −→Y . Then,
Alice can obtain −→X •−→Y = (−→X +−→r )•−→Y −−→r •−→Y and send it to Bob. This solution
obviously will double the cost of the scalar product protocol, but according to
the authors it still will be efficient than all existing ones. In [8], Du and Atallah
propose a protocol called Permutation Protocol. This last uses an additive homo-
morphic encryption as in [15] and our protocol. In first stage Alice generates a
pair of key (sk, pk) and crypt its vector with the public key pk. Then it sends its
n encrypted values and the public key to Bob; this phase needs n + 1 messages.
Using the public key it crypt its vector, then uses the property of additive ho-
momorphism to compute Encpk(−→X )×Encpk(−→Y ) = Encpk(−→X +−→Y ). It permutes
the entries and sends σ(Encpk(−→X +−→Y )) to Alice (σ represents the permutation
operation). Site Alice performs Decsk(σ(Encpk(−→X + −→Y ))) to obtain the result,
then sends it to Bob. The total number of messages exchanged in this protocol
is thus 2n + 2 messages. If we note by encrypted msg time the time to encrypt
a message, decrypted msg time the time to decrypt a message and permuta-
tion time the time to permute the entries, we have 2n× encrypted msg time +
decrypted msg time + permutation time = O(n). Now let us compare our pro-
tocol with the protocols described above. For better analyzing the efficiency of
our protocol, we also compare it with DNSP that is the scalar product com-
putation without privacy constraint. In the DNSP model, Bob would send his
vector to Alice to compute the scalar product and Alice will need to send the
result to Bob. This process requires n + 1 messages. DNSP requires n multiply
and n − 1 addition operations. Hence, the computational complexity is O(n).
Table 1 summarizes comparisons between our protocol and four other ones.

The table 1 highlights the differences between our protocol and four other
ones under three metrics: computational complexity, communication cost and the
communication overhead. If the computational complexity does not constitute

DNSP [8] [1] [15] Our protocol

Communication cost n + 1 2n + 2 3n/2 + 2 2n + 2 n + 3

Communication overhead 0 n + 1 n/2 + 1 n + 1 2

Computational complexity O(n) O(n) O(n2) O(n) O(n)

Fig. 1. Communication overhead and computational complexity
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really a problem because there are several parallel architectures and data mining
algorithms, communications will create a bottleneck that can decrease drastically
the overall performance of a data mining process. In table 1 we observe that
our protocol has a communication overhead of 2. Our protocol needs n + 3,
while DNSP model needs n+1 without privacy. Table 1 shows clearly that our
protocol outperforms of all other protocols.

7 Conclusion and Future Works

The secure scalar product is a very important issue in privacy preserving data
mining. Recently, several protocols have been proposed to solve this problem.
The evaluation of these protocols shows that they generate an important commu-
nication overhead. In this paper, we proposed a private scalar product protocol
based on standard cryptographic techniques. This proposal has two features: (i)
it is secure; (ii) it reduces the amount of communication between sites. The cur-
rent version of this protocol uses only binary contexts. In the future, we plan to
extend this protocol for numerical data and different kinds of databases (dense
and sparse databases).
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