Publication avant LAFMC

Titre Database replication in large scale systems: optimizing the number of replicas
Anfeurs Modou Gueye, Idrissa Sarr, Samba Ndiaye
Référence | EDBT/ICDT '09 Proceedings of the 2009 EDBT/ICDT Workshops
Editeur ACM
Pages 3.9
Année 2009
DOI 10.1145/1698790.1698794
URL https://dl.acm.org/citation.cfm?id=1698794
Index
ISBN 978-1-60558-650-2
Encadreur | Oui
Extrait Non

d’une thése

Source details

ACM International Conference Proceeding Series
Scopus coverage years: 1999, from 2002 to 2016
Publisher: ACM

Subject area: CComputer Science: Computer Vision and Pattern Recognition)

(Computer Science: Computer Networks and Communications) (Computer Science: Software) View all v

CiteScoreTracker 2018 ® Last updated on 11 February, 2019

Updated monthly

£ Citation Count 2018 2 749 Citations to date >

0.70 -

£ Documents 2015 - 2017 3 908 Documents to date >

DIGITA L SIGN IN SIGH UP
ACM@LIBRARY

ﬂ Check out a preview of the next ACM DL
Database replication in large scale systems: optimizing the number of replicas Tools and Resources

Full Text: TBpoF 1 Get this Artide ¥ Buy this Articie

@ Recommendthe ACM DL
1o your organization

Authors: Modou Gueye UCAD-FST, Dakar, Senegal
Idrissa Sarr UPMC Paris Universitas, LIPE Lab, France
Samba Ndiaye UCAD-FST, Daksr, Senegal

© 2009 Article

% Request Permissions

—J Bibliometrics "
Published in: R
; Citation Count: 1 BdEmai EHRSS
« Praceeding Downlozds (cumulstive) 254 -
" i Downloads |12 Months): 2
EDBT/ICDT '09 Proceedings of the 2009 EDBT/ICDT Workshops Rt Wi @ soie o Bincer
Pages 3-2
L3 Export Formats:
Saint-Petersburg, Russia — March 22 - 22, 2009 BibTeX EndMate ACM Ref
ACM New York, NY, USA 22008 =
ible of contents ISBN: 978-1-60558-650-2 doi>10.114511605780.1505794 EDIEH |

Author Tags

i° ContactUs | Switch to single page view (no tabs)

| Abstract ii-Allers || References || Gited By || Index Terms || ication || Reviews || & || Table of Contents |

In distributed systems, replication is used for ensuring availability and increasing performances, However, the heavy workioad of distributed systems
such as web2.0 applications or Global Distribution Systems, limits the benefit of replication if its degree (i.e., the number of replicas) is not controlled.
Since every replica must perferm all updates eventually, there 1s a point beyond which adding more replicas does not increase the throughput, because
every replica is saturated by applying updates. Mareover, if the replication degree exceeds the optimal threshold, the useless replica would generate an
overhead due to extra communication messages. In this paper, we propese a suitzble replication management solution in order to reduce useless’ |1
replicas. To this end, we define two mathematical models which approximate the appropriate number of replicas to achieve a given level of

performance. Moreover, we demonstrate the feasibility of our replication management model through simulation. The results expose the effectiveness |
of our models and their accuracy.

Powered by THE ACM GUIDE TO COMPUTING LITERATURE

The ACM Digital Library is published by the Association for Computing Machinery. Copyright © 2019 ACM, Inc.
Terms of Usage Privacy Policy Code of Ethics Contact Us

Database Replication in Large Scale Systems: Optimizing
the Number of Replicas

Modou Gueye
UCAD-FST
Dakar, SENEGAL
gmodou@ucad.sn

ABSTRACT

In distributed systems, replication is used for ensuring avail-
ability and increasing performances. However, the heavy
workload of distributed systems such as web2.0 applications
or Global Distribution Systems, limits the benefit of repli-
cation if its degree (i.e., the number of replicas) is not con-
trolled. Since every replica must perform all updates eventu-
ally, there is a point beyond which adding more replicas does
not increase the throughput, because every replica is satu-
rated by applying updates. Moreover, if the replication de-
gree exceeds the optimal threshold, the useless replica would
generate an overhead due to extra communication messages.
In this paper, we propose a suitable replication management
solution in order to reduce useless replicas. To this end, we
define two mathematical models which approximate the ap-
propriate number of replicas to achieve a given level of per-
formance. Moreover, we demonstrate the feasibility of our
replication management model through simulation. The re-
sults expose the effectiveness of our models and their accu-
racy.

1. INTRODUCTION

New applications such as Web2.0 applications and Global
Distribution Systems manage huge amount of data and deal
with heavy workloads. The challenge for these applications
is to ensure data availability and consistency in order to deal
with fast updates.

One solution to face this problem is to use replication. Al-
though replication is used to ensure either read performance
and write performance, improving both read and write per-
formance simultaneously is a more challenging task [4]. To

tackle only read performance, master-slave replication is widely

used. With this approach, read-only queries are performed
on the slave nodes and update queries are sent to the master
node. Conversely, to face read and write performance, multi-
master replication allows each replicas to store a full copy of
the database, thus read or write operations can be handled
anywhere. Furthermore, some synchronisation is needed to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAMAP 2009, March 22, 2009, Saint Petersburg, Russia.

Copyright 2009 ACM 978-1-60558-650-2 ...$5.00

Idrissa Sarr
UPMC Paris Universitas
_ LIP6 Lab, FRANCE
idrissa.sarr@lip6.fr

Samba Ndiaye
UCAD-FST
Dakar, SENEGAL
ndiayesa@ucad.sn

meet the mutual consistency requirement. To limit the syn-
chronisation, which can lead to aborts and thus system scal-
ability slowdown, some solution use lazy multi-master repli-
cation [16, 6] or delegate the consistency management to
the middleware layer [13, 18, 4]. The heavy workload of
Web2.0 applications or Global Distribution Systems, limits
the benefit of replication if its degree (i.e., the number of
replicas) is not controlled. Since every replica must per-
form all updates eventually, there is a point beyond which
adding more replicas does not increase the throughput, be-
cause every replica is saturated by applying updates. More-
over, if the replication degree exceeds the optimal threshold,
the useless replica would generate an overhead due to extra
communication messages.

Many solutions have been proposed in the field of database
replication, such as [13, 11, 12]. Some solutions include
freshness control, for instance [16, 6, 9, 1, 15, 6, 5]. Some
other, focus on data availability or fault-tolerant service,
such as [2, 7, 8, 19]. We base our work on the DTR approach
[18], since it offers update anywhere and freshness control
features, and is designed for Global Distribution Systems.

DTR proposed a solution which controls the freshness of
replicas in order to improve the performance of concurrent
updates. Furthermore, DTR availability has been enhanced
in [17] by using a middleware-based replication. However
none of these previous works attempt to compute which
replication threshold will reduce the overhead involved by
the management of replicas. Indeed, the formal model de-
scribed in [5] for controlling replication freshness, presents
good performances in terms of response time and network
traffic. Unfortunately, eventual replicas faults are not taken
into account, and reducing communication messages can be
improved by limiting the number of replicas. The goal of
this article is to limit the overhead involved by managing
useless replicas and to bring the following contributions:

e A replication management solution, based on the charac-
teristics of the system. In order to ensure data availability,
we propose a model that estimates the degree of replication
with respect to the resources or the volatility of the system.
We propose two ways to define the appropriate number of
replicas: (i) one based on the required system availability
and the frequency of nodes failures and () another which
takes into account the tolerated staleness of queries and node
capabilities in terms of throughput.

e An evaluation of our approach on a large scale simulator.
It demonstrates the feasibility of our approach and measures
the accuracy of our results.

The rest of this paper is organized as follows. We first
present in Section 2 the system architecture together with
the replication and freshness model. Section 3 describes our
replication solution based on a probabilistic approach. Sec-
tion 4 presents an analytical model to define the replication
degree. Section 5 presents the performances evalnation of
our replication approach through simulation. Section 6 con-
cludes.

2. SYSTEM AND REPLICATION MODEL

In this section we introduce our system and the replication
model upon which our approach relies.

2.1 Replication Model

We assume a single database with n relations R, ..., R" that
is fully replicated at m nodes Ni,..., Npm. We use a lazgy
multi-master (or update everywhere) replication scheme. Each
node can execute any incoming transaction and is called
the initial node of the transaction. Other nodes are later
refreshed by propagating the transaction through refresh
transactions. We distinguish between three kinds of trans-
actions:

e An update transaction is a sequence of SQL statements :
at least one of them updates the database.

e A refresh transaction is used to propagate update trans-
actions to the other nodes for refreshment.

e A query is a read-only transaction. Thus, it does not need
to be refreshed.

Let us note that, because we assume a fully replicated database

(i.e. we do not consider partial replication), we do not need
to deal with distributed transactions, i.e. each transaction
can be entirely executed at a single node.

2.2 System Model and Definitions

We base our solution in DTR2 architecture system [17]. In
DTR2, we distinguish three kinds of nodes: Client Nodes
(CN), Transaction Manager Nodes (TM), Data nodes (DN)
and Shared Directory nodes (SDN). CNs send transactions
to TMs which route them for execution to DNs by using
the SDNs which store the metadata. Queries may access
stale data, provided it is controlled by applications. In other
words, applications can associate a tolerated staleness with
queries.

Definition 1. Staleness can be defined through various
measures [9]. In this paper, we only consider one measure,
defined as the number of missing updates. The average stal-
eness tolerated by a query is denoted by §.

Furthermore, DNs use a local DBMS to store data and ex-
ecute the transactions received from the TMs. Thus, the
number of transactions performed by a DN during a while,
have a significant impact on the overall performances.

10

Definition 2. The theoretical throughput of a DN, de-
noted yp, is the average number of transactions that a DN
can process per unit time.

For instance, if yp is equal to 15, assuming that K units
time lasted, the number of transactions processed is equal
to 15 * K.

3. PROBABILISTIC REPLICATION THRESH-

OLD

In this section, we first define the probability that a node
failure occurs with respect to our architecture. Then, we
define the threshold beyond which performances do not in-
crease.

3.1 Model and Frequency of Node Failure
3.1.1 Failure Model

We consider only two kinds of components: the nodes that
process the transactions, and the communication links be-
tween the nodes. At runtime, each of these components may
fail, leading to a node or communication failure. In this sec-
tion, we assume fail-stop failures: a node is either working
correctly or not working at all (it is down). We also as-
sume that communication failure may occur but is far less
frequent than node failure.

3.1.2 Frequency of Node Failure
The frequency of failures in distributed systems has been
widely studied. Based on the work of [10]. we assume that
the failures follow a Poisson distribution, we can derive the
next formula.

At)*
G (1)
Py represents the probability of k failures during the time in-
terval £ where A is the failure rate. Effectively, it must exist
better way than Poisson distribution to model failures. For
example distributions such as Weibull used in [3] for predict-
ing a system availability gives a good precision. Nevertheless
our mean goal is not to define the probability of failures or
to predict them, but to define the number of needed replicas
using this probability.

— At
P =

3.2 Probabilistic Threshold

Replication can tolerate failures, because if a node fails, we
will use another replica to replace it. However the degree of
replication must be monitored and adjusted with respect to
the frequency of failures for minimizing the cost of managing
the mutual consistency. Then, given a frequency of node
failures, our goal is to estimate how much replicas are needed
to ensure system availability, We define system availability
as follows:

Definition 3. A system is available as long as there is at
least one DN to perform the read or write operations. This
DN can be stale, thus it needs to be refreshed by process-
ing a set of refresh transactions before applying incoming
operations,

To reach our goal, we use the previous formula which gives
the probability that & failures oceur during the time inter-
val . We also assume that the failed nodes do not recover
during the time ¢. Then, we define the replication threshold,
denoted k, that is needed to ensure the availability of the
system:
1 2M 1

k> 1T B 2]
P, is the tolerated number of nodes that can fail without
compromising the system. So, given the probability of fail-
ures that the application tolerates and the failure rate, we
assess the degree of replication required to guaranty that our
system will remain available during a time interval ¢t. For
more details, see Appendiz A.

(2)

Exampfe. Given a system with a failure rate equals to 0.1
(A = 1) and a time interval ¢ equal to 100s. We obtain
the average number of failures during the time interval ¢
with A * ¢ = 10. Then, by using Formula 2, we get k >
[12.1534295]. Thus, with 13 replicas, the system remains
available during ¢ despite the occurrence of 10 node failures.

4. ANALYTIC REPLICATION THRESHOLD

We propose now an analytical method for bounding the
replication degree. We distinguish update transactions from
queries. First, we present an estimation of the number of
queries processed during a given time interval. Then, we
describe our analytical model to estimate the replication

threshold.

4.1 Number of processed queries

We assume that S, yp, and the incoming workload (number
of incoming transactions and queries) are known. We also
assume that the number of queries is very high compared to
the number of updates, and the network latency is fixed.

Let be ni, the average number of incoming updates per time
unit, ¢, their average execution cost, na, the average num-
ber of incoming queries per time unit, and ¢z, their average
execution cost. The following formula gives the number of
queries ((Q,(k)) processed by m DNs during k time units.

kxp + 8 #ep + (—1;:”) *Co
b

T

Qp(k) = (3)

r, is equal to % and the estimated number of queries com-
puted Q,(k) is a function of m. For more details, see Ap-
pendiz B. Formula 3 is very convenient since it allows us to
compute the theoretical number of queries performed during
a given time interval based on the transactions and system
characteristics. The Section 5 presents measures which con-
firm this formula.

4.2 Analytical Replication Threshold

The knowledge of this threshold is very significant since it
avoids useless replicas. We distinguish two ways to compute
this threshold, depending on the workload size, namely ei-
ther RTYHW for high workload or RT/LW for low workload
To this end, we use the equation 3 with some transforma-
tions and mathematical concepts.

11

RT4HW. To find the minimal number of replicas required
to face high workload, we derive the equation 3 and use the
increasing flow of processed queries (o) when m becomes
high. Then, we obtain the following formula to determine
the RT4HW:

Car

car?(k + Se —ep— 2L
mZ\/ ar*(kxp ; L2} = (4)

ach c1

With o > 0. The smaller is «, the better will be the thresh-
old. We notice that our formula works well if the workload is
so high that the system cannot perform all incoming queries.
Intuitively, any added replica will increase the number of
processed queries, then a is always greater than zero.

RT4LW. We study the case where the workload is low, or
the DN throughput is so high that the system can execute all
queries during the & time units. Thus, adding new replicas
will not increase the number of processed queries (i.e. o =
0). We conclude easily that our previous formula fails since
m — oo when o« — 0. To face this case, we define the
following formula:

Ca (kﬂ.g — 1)
(XD — 'H-]) “+ SC] — C2

m > A (5)
For low workload, this formula provides a better threshold
as it is demonstrated by experimentation (see Figure 2). For
intermediate workload, using either Formula 4 or 5 depends
onp Ifp = 9]—%*- + e¢ing then use Formula 5, else use
Formula 4. See Appendiz C for details about these two
formulas.

Example. Let us consider the following values for the pa-
rameters: €1 = 2,2 = 5,n1 = 18,k = 59 and S = 100.
The value of the sum Q_k—scl + eing is then 32,694, For a
throughput y p lower than this value, the Formula 4 must be
used. This is the case shown in the Figure 1. If we change
the values of ¢; and ez respectively with 1 and 3, the value
of the previous sum becomes equal to 16,355 and then, for
a throughput equal to 30, the Formula 5 must be taken as
we can see it with the Figure 2.

5. EXPERIMENTAL EVALUATION

In this, section we validate our approach through simulation
by using Peersim [14]. Peersim is a P2P system simulator
developed with Java. We have extended Peersim classes in
order to implement our experiments. Our first goal is to
check the accuracy of our formulas which estimate the repli-
cation threshold. To this end, we compare the analytical
throughput (computed with the Formula 3) with the experi-
mental throughput (measured after running the simulation).
We ran a set of experiments, varying the number of replicas
from 2 to 100.

To set up our simulation experiments, we choose k& = 60,
the number of updates n;= 1000, the number of queries
n1=2000, and the average of tolerated staleness equals 100.
The cost of queries ¢ is always greater than ¢; and during
all the experimentation we take ¢z = 2.5 % ¢;. This specific
setup was chosen, because we deal with Web2.0 applications
which received a number of read operations more than write

operations, and cost of processing updates is smaller than
cost of processing queries.

The Figure 1 shows the threshold beyond which the number
of processed queries does not increase any more. Moreover,
it highlights that our analytical results provide a useful ap-
proximation. Indeed, the threshold obtained either analyti-
cally or by simulation is almost the same.

~=— C2TH —e—Simulation

2000 4

£

% |

ET?UU-

o

§ oo

-

o

=

& a0

T 4

1 " 21 31 41 51 &1 Tt 81 a1

Number of replicas

Figure 1: Analytical vs. Real throughput

Furthermore, we increase the DN throughput by a factor of
2 in order to measure the lack of precision by using Formula
4 when workload decreases. The results in Figure 2 show the
large gap between the analytical and the measured thresh-
old {more than 1500 queries) by using Formula 4, where
Formula 5 produce a negligible gap. Ongoing works will try
to validate our model with a real system in order to prove
that it works well.

[' A -C2TH +CZTL—0—Slmuajnn|

4000 5
i P S
£ 3000 s
= L

r‘-
gzdnn- @t
5 .
o 1EI0 4
s
b
& a00
L T E—— == =

1 1 2 31 a1 51 &1 Ry 5 A
Mumber of replicas

Figure 2: Analytical vs. Real throughput

6. CONCLUSION

This article deals with replication threshold in the context
of distributed databases. Beyond this threshold, no perfor-
mance benefit would be noticed. We propose a model to
estimate this threshold by two theoretical methods, one is
probabilistic and the other one is analytical. Our probabilis-
tic method, based on the Poisson distribution, computes the
replication threshold k with respect to the needed availabil-
ity. This replication threshold depends on the arrival rate of
replicas failures and the probability of system failure. The
analytic method allows us to assess the replication threshold
by taking into account the mains factors affecting transac-
tions processing. Our experimental simulation demonstrates

12

the feasibility of our approach and measures the precision of
our estimates.

Appendix A. Let us be S a system, A the average of the
arrival rate of failures, Pioi, the node probability tolerated
during ¢ In order to ensure data availability durind f, we
need to find £, the number of replicas such that P, > P,,;.
Assume m be the number of replicas and :

Vi <k= P <Ba < Pn

Setting m = k - 1 leads to:

P42B+ ... +mPy > P+ 2Pt + ... + mPior (6)

Then we can deduce:
- (m + 1

S up, > M0 D, (M)

n=1
If we substitue P, for its value in 7, we get:
m P
e (At)" m{m+ 1)
g = P, 3
‘ Z (n—1)! — 2 fol (8)

n=1

When we add positives terms to the right of the inequality
8, we have:

m—1 o0 4
ot (AL)" (AL)" m(m+ 1)
>
W Tt e g e O
Then we can get
A= (M) m(m+1)
>
At.e ; T 2 g b (10)
By taking the limited development near zero, we get
Y {)ﬂf}" -
n=0 ('ﬂ.}
Therefore the inequality 10 becomes:
> m(m+ 1) P (11)

Hence, we solve the inequality m? +m — L’{ < 0 which give

us the Formula 2 estimating the number of needed replicas
to keep the data available.

Appendix B. Assume that ny is the average number of in-
coming updates per unit time and ¢, their average execution
cost. We let no be the average number of incoming queries
per unit time and ¢z their average execution cost. Likewise
S is the average staleness and yp the average throughput
of replicas. The system receives both updates and queries.
Let be r the ratio of ns to ni. 12

r=o2
ny

Let us number the queries in their arrivals order, so J; is

the it* query. Likewise U; is the 5" incoming update. Let

us assume that the number of updates and queries arrivals

per time unit is enough to consider them regulars. Because
of this, the arrival of €; supposes the one of U; with: j = i
Let us assume that at least a query is computed, and @; the
last query handled by the system during a while (a number
of units time), and m the number of system replicas. By
taking into account the previous updates, the computation
of (J; on a replica has a global cost equal to:

CQ.@: (E—S)C]_'f' (E_l
b e

The term (£ — S) ¢1 represents the number of updates that
must be computed by the replica for reaching the staleness
required by the query. Then, it cannot be negative. The
second term of the Formula (() c2) means that i — 1
queries are yet arrived before); and are sent uniformly on
the m replicas. The last term is the average execution cost
of (J;. Let us k be the execution duration in number of time

units. Thus, we can set:

)CQ + €2 (12)

CQi < kxp (13)

In other words:

(1 - g) 5 o (M) . (14)
T T

The large inequality represents the amount of works needed
to compute (); on the replica. With this last formula, we can
distinguish two cases:(1) the replica is fully used during all
the execution, then we have the equality case, () the replica
is partially used, so the strict inequality is considered . Now,
we consider that the replica is fully occupied and the case
in which the replica is partially occupied will be described
later. Then let set:

(i—g) (’.1+<M) c2 = kxp (15)
r m

That involves:

; i - —1
E(’.l 4 LCQ — Sep + (m.) cz = ky (15)
r m T

Therefore:

i(c—l-}-c‘—z):kxp +S'cl+(1_m) ez (17)

T m m

Hence, we can deduce the formula:

;= kxp + Sei + (52) e

m
TR
| 4 + n

(18)

This theoretical result is the number of queries computed
by the system during k time units. It assumes a good trans-
actional load balance and takes its full importance since it
allows us to find a replication threshold. The next appendix
talks about this point.

Appendix C. As shown in section 4, we can follow the sys-
tem evolution with our analytical method. Then, it follows
that we can find a sufficient number of replicas which must
be a good replication threshold. Let us remind that the
knowledge of this value is very important since it would al-
low to avoid the addition of unless replicas.

Let us consider the function i = f (m) found in 18:

= k)(_u + §(:1 + (‘];m‘) Co

T

i= f(m) (19)

SR
=¥

T

The figures presented above show the existence of the repli-
cation threshold. Beyond this number of replicas, the system
performances do not increase. The variations of the curve
of evolution are almost nil (i.e. the rate of change 7., s of
the tunction f is very low).

Let us note that this derivative cannot be negative. Indeed,
the number of processed queries increases with the number
of replicas. However, this increase became much small, al-

most nil, when we exceed the replication threshold.

We can easily compute

car? (kXD +8e1 —c2 — “—'L)

R fm+h)—f(m) 2
maf = h T (evm + cor) (crm + cor + e1h)
(20)
Therefore

2 ; o ¢
fOn+h)—f(m) car (kxn + Se1 —ca— ;;-)

lim 1, = lim
) 2
h—0 h—0 h (crm + cor)

(21)

Let us choose an enough small rate of change o but higher
than zero and postulate:

' <
Jim 7,5 < (22)

This let us say that:

02?'2 (A‘-XD i §c1 —ilg: — ‘ﬂ;)

; <o 23
(erm + car)? - (23)
and then
car? (kxn + Sep —ea — ﬂ) i
m > = it (’i (24)
G 1

As we are already said, we assume that at least a query is
computed and then we suppose that the execution time k
is enough higher to have kxp > c2. Otherwise, it would
implicate that any query is not computed. The replication
threshold given by the Formula 24 seems be better as the
approximation value « is smaller. However, this approxima-
tion value must be taken with care. For instance, if we take
0.5 as approximation value, we have 81 replicas as replica-
tion threshold value. For an approximation value equals to
0.4, we have 91 replicas. The difference of approxmation
values given equals (0.1 but 10 replicas must be added. The
number of computed queries by 91 replicas is not larger that
0.004 percent than the one of 81 replicas while the number
of added replicas is 0,123%.This shows the importance to
choose a good approximation value for getting best repli-
cation threshold. The Formula 24 is usable if the system
load in terms of numbers and costs of incoming queries and
updates is heavy (see Section 5). If the system workload is
light, the above formula may give a bad threshold. In other
words, it exists a number of replicas smaller than the given
threshold and sufficient for computing the set of incoming
queries. Then, we define another formula for such cases. In
these cases, all queries are computed. Then let assume that

kx—i—gc;—#(%@)cz
- (SR
™

m

> kna

i= f(m) (25)

ko is the full number of incoming queries. By transposition,
we get:

= [} (5] 2
s y S R O 1 i i ¢
o+ Qs m c2 2 kna (r ¥ m) (26)
which implicates:
k(x —ecini)+ 8e; — ez o L (27)

ez (kng — 1) —m
The term k(x —cini) + Seq — o must be positive. If not,
we obtain the contradiction % < 0 even though m is a pos-
itive number. This term is negative in the case where the
throughput system is not sufficient for treating all queries.
Thus we have:

m > ca (kma —]}
kE(x —ein)+ Sep —ea

14

This last condition is enough for the cases where the transac-
tional system load is small comparing with its throughput.
The replication threshold is there the smallest number of
replicas which satisfies formula 25.

We use Formula 25 when the term k (y — ein1) + Sei — ez
is positive otherwise Formula 24 is required with an enough
small rate of change a for having a good replication thresh-
old.

7. REFERENCES

[1] F. Akal, C. Tiirker, H. Schek, Y. Breitbart, T. Grabs,
and L. Veen. Fine-Grained Replication and Scheduling
with Freshness and Correctness Guarantees. In Ini.
Conf. on Very Large DataBase (VLDB), 2005.

[2] G. Antoniu, J. Deverge, and S. Monnet. How to Bring
Together Fault Tolerance and Data Consistency to
Enable Grid Data Sharing. Concurrency and
Computation: Practice and FErperience, 18(13), 2006.

[3] J. Brevik, D. Nurmi, and R. Wolski. Automatic
methods for predicting machine availability in desktop
grid and peer-to-peer systems. In CCGRID 04
Proceedings of the 2004 IEEE International
Symposium on Cluster Computing and the Grid, pages
190-199, Washington, DC, USA, 2004. IEEE
Computer Society.

[4] E. Cecchet, G. Candea, and A. Ailamaki.
Middleware-based Database Replication: The Gaps
Between Theory and Practice. SIGMOD, 2008.

[5] R. Gallersdérfer and M. Nicola. Improving
Performance in Replicated Databases through Relaxed
Coherency. In VLDB 1995, Proceedings of 26th
International Conference on Very Large Data Bases,
Zurich, Switzerland, 1995.

[6] S. Gangarski, H. Naacke, E. Pacitti, and P. Valduriez.
The Leganet System: Freshness-aware Transaction
Routing in a Database Cluster. Journal of
Information Systems, 32(2), 2006.

[7] R. Guerraoui and A. Schiper. Software-Based
Replication for Fault Tolerance. IEEE Computer,
30(40), 1997.

[8] R. Koo and S. Toueg. Checkpointing and
Rollback-Recovery for Distributed Systems. IEEE
Transactions on Software Engineering, 13(1), 1987.

[9] C. Le Pape, S. Gancarski, and P. Valduriez. Refresco:
Improving Query Performance Through Freshness
Control in a Database Cluster. In Int. Conf. On
Cooperative Information Systems (CooplS), 2004.

M. T. Ozsu and Patrick Valduriez. Principles of
Distributed Database Systems. Prentice Hall, 1999.
E. Pacitti, C. Coulon, Patrick Valduriez, and T. Ozsu.
Preventive Replication in a Database Cluster.
Distributed and Parallel Databases, 18(3), 2005.

E. Pacitti, P. Minet, and E. Simon. Fast Algorithms
for Maintaining Replica Consistency in Lazy Master
Replicated Databases. Int. Conf. on Very Large
DataBase (VLDB), 1999.

M. Patino-Martinez, R. Jimenez-Peres, B. Kemme,
and G. Alonso. MIDDLE-R, Consistent Database
Replication at the Middleware Level. ACM
Transactions on Computer Systems, 28(4), 2005.
[14] PeerSim. http://peersim.sourceforge.net/.

(10]

[11]

[12]

[13]

(15]

(16]

(17]

(18]

(19]

K. Ramamritham and C. Pu. A Formal
Characterization of Epsilon Serializability. [EEE
Transactions on Knowledge and Data Engineering,
07(6), 1995.

U. Rohm, K. Bohm, H. Sheck, and H. Schuldt. FAS -
a Freshness-Sensitive Coordination Middleware for
OLAP Components. Int. Conf. on Very Large
DataBase (VLDB), 2002.

I. SARR, H. Naacke, and S. Gangarski. Distributed
Transaction Routing with Failure Management in a
Large Scale Network. In 24 Journées de Bases de
Données Avancées BDA, 2008.

I. SARR, H. Naacke, and S. Gangarski. DTR:
Distributed Transaction Routing in a Large Scale
Network. In VECPAR’08 Workshop on
High-Performance Data Management in Grid
Environments (selected papers), 2008.

F. B. Schneider. Implementing Fault-tolerant Services
using the State Machine Approach: A tutorial.
Technical report, ACM Computing surveys, 1990.

15

