Publication avant LAFMC

Titre LH*S : a High-availability and High-security Scalable Distributed Data Structure
Auteurs W. Litwin, M-A Neimat, G. Levy, S. Ndiaye, T. Seck
Référence Proceedings Seventh International Workshop on Research Issues in Data
Engineering. High Performance Database Management for Large-Scale
Applications
Editeur IEEE
Pages
Année 2002
DOI 10.1109/RIDE.1997.583720
URL https://ieeexplore.ieee.org/document/583720
Index https://www.scopus.com/authid/detail.uri?authorld=6701604512
ISBN 0-8186-7849-6
Encadreur | Oui
Extrait Non

d’une thése

|EEE.org | IEEE Xplore Digital Library | IEEE-SA | IEEE Spectrum | More Sites

IEEE Xplore®

> Institutional Sign In

Digital Library

Browse v

My Settings v Get Help + Subscribe

Advanced Search I

Conferences = Proceedings Sevenih Iniernali e

LH*s: a high-availability and high-security scalable distributed data structure

EEUNOLT S W Litwin M-A. Neimat ; G. Lev | 3. Ndiaye ; T. Seck View All Authors

3 41
Paper Full
Citations Text Views

Abstract
—_—

Authors

References

Citations

Keywords

Metrics

@ + @

K
@
»

Abstract:

LH"s is high availability variant of LH*, a Scalable Distributed Data Structure. An LH"s record is striped onte
different server nodes. A parity segment allows one to reconstruct the record if a segment fails. The insert
or key search time is about a msec on a 10 Mb/s net, and about 100 /spl mu/s at 1 Gb/s net, assuming the
segments in the distributed RAM. The file size depends only on the distributed storage available, ie., a
RAM file can reach dozens of GB in practice. Data security is enhanced, -as every site contains only partial
and typically meaningless data. The price to pay is 20-50% more storage for the file than for an LH* file,
and some additional messaging, especially for the scan search.

Published in: Proceedings Seventh International Workshop on Research Issues in Data Engineering. High
Performance Database Management for Large-Scale Applications

Date of Conference: 7-8 April 1997 INSPEC Accession Number: 5546212

Date Added to IEEE Xplore: 06 August 2002 DOI: 10.1109/RIDE.1997 583720
Print ISBN: 0-8186-7848-6 Publisher: [EEE

Conference Location: Birmingham, UK, UK

Cart (0) | Create Account | Personal Sign In

¢ IEEE

Other Search Options

Advertisement
Need

Full-Text

access to |[EEE Xplore
for your organization?

REQUEST A FREE TR

More Like This

Optimizing NEURON brain simulator with Remote
Memory Access on distributed memory systems
2015 International Conference on Emerging
Technologies (ICET)

Published: 2015

Facilitating the development of portable paraliel
applications on distributed memory systems

Programming Models for Massively Parallel
Computers

Published 1995

View More

/&IEEE

See the top organizations patenting in
technologies mentioned in this article

LH*s : a High-availability and High-security
Scalable Distributed Data Structure

W. Litwir! M-A Neimat2 G. Levyt's. Ndiaye®, T. Seck®

Abstract

LH*s is high-availability variant of LH*, a Scalable
Distributed Data Structure. An LH*s record is
striped onto different server nodes. A parity segment
allows to reconstruct the record if a segment fails.
The insert or key search time is about a msec on a

10 Mb/s net, and about 100 (s at 1 Gb/s net,
assuming the segments in the distributed RAM. The
file size depends only on the distributed storage
available, i.e., a RAM file can reach dozens of GB in
practice. Data security is enhanced, as every site
contains only partial and typically meaningless data.
The price to pay is 20 - 50 % more storage for the file
than for an LH* file, and some additional messaging,
especially for the scan search.

Introduction

Multicomputers are collections of autonomous WSs or
PCs over a network (network multicomputers), or of
share-nothing processors with a local storage linked
through a high-speed network or bus (switched
multicomputers) [T95]. It is well known that
multicomputers offer best price-performance ratio
[T95], [M96]. Research on multicomputers becomes
popular [C94], [G96]. The Scalable Distributed Data
Structures (SDDSs), like LH* [LNS93], are new data
structures designed for multicomputer files. An SDDS
gracefully scales up with inserts over available
distributed storage, the distributed RAM storage
preferably. One problem that a designer of an SDDS
may face is a site failure. Some applications require
high-availability schemes, allowing data to remain
available despite a site failure [M96]. Distributed data
are also vulnerable to an unauthorized local or remote
intrusion. This makes useful the high-security SDDS
schemes, making an unauthorized access to the data
difficult.

The LH* schemes with mirroring in [LNS96], called
here LH*,, are first SDDSs designed for high-
availability. The schema proposed below, termed
LH*s, responds to the high-availability and the high-

! Université Paris 9, litwin@etud.dauphine.fr
2 Hewlet-Packard Laboratories, Palo Alto, California, neimat@hpl.hp.com
® Université de Dakar, ndiayesa@esp.esp.sn, seckm@ensut.ensut.sn

security needs. A record in LH* file is striped into k
> 1 segments (stripes) put on different nodes, and into
distinct LH* files. There is also a segment with the
parity bits, as in RAID schemes and others [PGK88],
[HO95], [R94], [SS90]. The striping is basically
performed at bit level, putting consecutive bits of the
record into different segments. The schema supports
any single bucket (server site) unavailability. It also
supports any single-site intrusion without disclosing a
record content. One can read at best one segment,
typically meaningless, as containing 1 bit from every k
in the record.

With respect to an LH* file, the LH* file with the
same records requires more storage, usually about

15 + 25 %, because of the parity segments. Access
performance of LH*s, in terms of network transfer
time per insert or key search, is close to this of LH*.
There is some deterioration for an insert, as the parity
segment has to be sent out. Similarly the key search
for a record can be somehow slower than for LH*, as
it has to be sent out by the client to k buckets. There is
also more CPU time involved as any record travels in
at least two messages. Nevertheless, this price should
be acceptable for many applications.

The bit-level striping affects more the scan search,
where all the records are searched for some non-key
values. A scan search in an LH* file is dealt with
using a parallel query to every bucket. It requires in
general a more costly processing in an LH*s file with
the bit-level striping, as records have to be
reconstructed on-the-fly. For applications where scan
performance is of prime importance, LH*s allows for
striping at the attribute-level. A segment contains then
entire attributes of the record. Scan search
performance becomes better, at the expense of the
high-security, as an intruder to a site disposes at least
of some attributes of a record.

Next section presents LH*s. Section 3 discusses the
performance of file manipulations. Section 4
discusses the security issues. Section 5 overviews the
related work. Section 6 concludes the paper.

Overview of LH*s

Principles of LH*

We now recall the principles of LH* schemes
[LNS93]. An LH* file resides on server computers
(nodes), and is accessed by applications on client
nodes. A server is always available for access from the
clients. A client in contrast is autonomous, perhaps
mobile, hence guaranteed to be accessible only when it
is an initiator of the connection. The file consists of
records identified by (primary) keys. Records are
stored in buckets with a capacity of b records ; b >> 1.
Buckets are numbered 0,1,2..N. There is one bucket of
a file per server, although different files may share
servers. Buckets are assumed in RAM. The file starts
with bucket 0, and scales up with inserts, through
bucket splits.

Bucket addresses are mapped to the network addresses
of the servers using physical allocation tables at the
clients, and the servers. Each element of a table
contains an address. A table, let it be T, can be static
or dynamic. In the latter case, the address for bucket n
can be arbitrarily chosen, especially by the
coordinator, and stored in T (n). Different sites may
have different tables. The coordinator refreshes T at
every bucket, when it sends the request to split. The
message contains then all the new addresses added to
the file since the previous split of the bucket. The
servers send T to clients with every IAM. A dynamic
table can scale potentially to any length. Also, it
allows for easier bucket migrations than if a static T.
The splitting and addressing rules of LH* are based on
those of linear hashing (LH) [L80]. Every split moves
about half of the records in a bucket into a new bucket
at a new server, appended to the file. The splits are
done inthe order 0; 0, 1; 0, 1, 2; 0, ..., 2; 0, ... The
next bucket to split is denoted bucket n, and is also
called the split pointer.

The splits are triggered by bucket overflows. In LH*, a
bucket that overflows reports the overflow to a
dedicated node called the coordinator. The coordinator
applies the load control policy to find whether the
overflow should trigger the split. If so, the coordinator
initiates the split of bucket n.

To perform the splits and the addressing, an LH* file
uses a family of hash functions h;, i =0,1.. Each h;
hashes a key ¢ into bucket address h; (c) =c mod 2'. A
split results from the replacement of function h;
currently used for bucket n with function h; ;. Thei
value is called the bucket level. At any time, an LH*
file can only have buckets with level iori+ 1, i
=0,1,.. The coordinator is the only node in the file that
knows the current values of n and i. The correct
address, denoted a, of key c in an LH* file is the
address where c should be, given n and i, i.e., where it

should be dynamically hashed. The address a is
defined by the LH addressing algorithm [L80]:

(Al) a < hi(©);
ifa<nthena < hj,;(C);

To avoid a hot spot, LH* clients do not access the
coordinator for the address computation. As for any
SDDS, an LH* client has therefore its own image of
the file. For LH*, it consists of values noted i' and n' ;
i'=n"'=0 for a new client. These values may vary
among clients and may differ from the actual n and i.
The client uses its image to calculate the address a' =
A (n', i') for key c, while issuing a (point-to-point)
request for the search of c, or for an insert or a delete
of the record identified by c. It then sends the request,
and perhaps the record to server a'. LH* supports also
multicast and broadcast queries addressing through
one message all N buckets, [LNS93].

It might happen that a' # a. Hence, every server s
receiving a request first tests whether s = a. For this
purpose, every server keeps the current value of i. It
can be proven that s = a iff s = h; (c). If the test fails,
the server forwards the request to another server. The
LH* test and forwarding algorithm is as follows,
[LNS93]:

(A2) & - hi(©);

if a' = athen accept ¢ ;
a" - hj_1(0);

ifa">a and a"<a' then a' - a";

forward c to bucket @' ;
The forwarding process could a priori create many
hops. The major property of LH* is however that
every request to an LH* file is delivered to the correct
address after at most two hops, [LNS93].
As for any SDDS, the correct server finally sends a
message back to the client, called an Image
Adjustment Message (IAM). For LH*, an IAM
contains the i value of server a'. The value of split
pointer n is unknown to the servers, hence is not in
IAMs. The client executes then the IA-Algorithm,
[LNS93]:

(A3) ifi>i"theni'—i-1, n —a+l;
if n'>2" then n'=0, i' i'+1;

The result of (A3) is a better image, with both i* and n'
closer to the actual values. Also, as long as there is no
new split, the same addressing error cannot occur.
(A3) makes LH*-images converge rapidly [LNS93].
Usually, O (log N) IAMs to a new client (the worst
case for image accuracy) suffice to about eliminate the
forwarding. If a client already has a good image, but
the file starts to scale-up, algorithm (A3) suffices to
keep the incidence of forwarding on the access

performance about negligible. In practice, the average
key insert cost is one message, and both a successful
and unsuccessful key search cost is two messages,
regardless of the file size. The worst access
performance of an insert or search corresponds to the
case of two hops. These costs for LH* are of four
messages, also regardless of the number of nodes of
the file.

The principles of LH* led to many variants [LNS93a],
[KLR96]. The schemes offer various trade-offs
adapted to particularities of applications.

Principles of LH*s

We now discuss the basic LH*s using the bit-level
striping (segmentation, scattering..). Arecord Ris a
key, usually denoted c, and a sequence of bits B,
numbered from left to right

B = by,...,bibka...badbosr...bmk . The size of B is mk,
last bits being padded if needed in practice. When an
LH*s client should store R, then it proceeds as

follows,

« It produces k segments, k > 1. The i-th segment s;
consists from ¢ and from all the bits s'; :

SERESI T Y S
« It produces the parity segment s.; that also contains
¢ and the parity bits s' 41, let us say for the even parity:
S'wa = bbby
where bit b’ is the parity bit for the string with the j-th
bit of each segment ; 1 < j < k. If some segment s of R

cannot be read, the parity segment, allows to
reconstruct s.

R
’ 53 |011011001110 0101110‘

Parity

LH*, client segment

S1 S4
S2 S3

’ 53 IOOOl.,.,‘ ’ 53 IllOl,,.,‘ ’ 53 ‘ 1110..... ‘ W

Fig. 1 LH*s scattering of a record into k =3
segments

An LH*s file is created as a family @of k+1 LH*
segment files S;..Sy,1. File S; stores all the segments
s;. The address of segment s; is calculated from its key
c that is, we recall, also the key of R. Asin LH*y,,
[LNS96], two segment files can be structurally-alike
(SA). They have then the same parameters : the bucket
size, the functions h;, etc. They can also be
structurally-different (SD) which means that these
parameters differ. SD-files are loosely-coupled if they
share functions h;. Otherwise, they are minimally-

coupled [LNS96]. Fig. 3]shows the relationship
between SA and SD files.

The basic constraint on @ is that for every record R,
all its segments are mapped to different nodes, or at
least buckets. One way to achieve it is to provide each
S with the physical allocation table Ts spanning over
distinct nodes of the multicomputer. In other words, no
node carries then a bucket of S; and of S; when'i # j.
For SA segment files, every segment of the same
record R is usually in the bucket with the same bucket
address m within its segment file, as in For
instance, after some inserts into F, the segments of R
with key ¢ = 100, may be all in buckets 57 of their
files. The client keeps a single LH* image with the
(guessed) file level i* and the split pointer value n' for
every S. For SD segment files, the segments' bucket
addresses typically differ, Hence, there is one
image per S on the client and these images usually
differ as well.

As usually for an LH* file, every S expands through
splits, tolerates addressing errors, and sends |AMs to
its clients. Splits among segment files are not
synchronized, i.e., each S split autonomously. Hence,
even in SA segment files, it may happen that bucket m
in a segment file S; splits before another bucket m in
the segment file S; ; j # +. One reason may be that S;
failed when it should split after a new insert. A
segment of record R may then be in new bucket in S;
while another segment of R is still in bucket m in S;.
Hence, the addresses of the segments of a record
within their SA segment files may sometimes differ as
well.

The whole set @ of LH*s segment files S has a
common component at some server called the segment
file coordinator, SC in short. Its address is known to
every server and every client. SC takes care of the
LH* coordination for each S. This includes all the
allocation tables, assumed dynamic, since easier to
manage for a spare production. In addition, it has
capabilities for the fault-tolerance of the whole
collection that we'll introduce.

In particular, SC gets alerted when a bucket failure is
detected. The alert may come from a client that failed
with a file manipulation. It may also come from a
server that could not forward a message or could not
split. If a failure is confirmed, SC coordinates the
creation of the spare.

File manipulation

Inserts
To insert record R, the client first produces the (k + 1)
segments. Then. it sends each segments; ;i=1.k+1

; using a unicast message to bucket m;, where m;
results from the LH* address computation (Al)
executed on the client for each segment file S;. Unlike

for LH*, each message carries the value m; for the
reasons discussed more in depth in Section p] The
server addressed by the message usually carries bucket
m;. It might rarely happen that it carries another
bucket. This occurs when bucket m; failed and was
recreated at another location. If it happens, the server
that got the message forwards it to SC. SC determines
from the allocation tables where bucket m; actually is,
and resents the message. An IAM comes later to the
client, from bucket m;, with its actual address.

Once bucket m; gets the message, a forwarding may
occur as usually for an LH* file. The forwarded
message also carries the number, let it be m, of bucket
m the message is intended for. If another bucket is
found at the destination site instead, the message is
resent to SC, as above, etc. Since in LH* there are at
most two forwardings, SC can get the messages at
most three time as well. Same process may occur for
each segment file. It is however very unlikely that all
this happens simultaneously for all the segments of the
same insert. The typical case is that every segment is
inserted without any forwarding.

Assuming nevertheless that a forwarding occurs at a
segment file, the client receives an IAM. Up to (k + 1)
IAMs may therefore be triggered by an insert. The
client of SD segment files adjusts each image. The
client of SA segment files, has to proceed differently,
since it has only one image. The basic strategy is that
the client performs the 1A-algorithm for an address a'
only when all the (k + 1) IAM messages with a' and
(same) i' are received.

A client or a forwarding server may also find a bucket
unavailable. It then alerts SC and forwards the
segment to it. The client considers the insert
successful if it encounters at most one failed bucket.
Otherwise, the client waits for a message from SC,
advising whether the insert is finally successful or not.
The failed bucket can be indeed the correct bucket for
the segment, or the intermediate bucket that should
forward the segment. The insert basically fails if the
SC finds unavailable more than one correct bucket for
a segment. There can be in contrast several forwarding
buckets unavailable. SC may bypass such buckets, as
it has the actual image of the file. If only one bucket is
unavailable, the segment that was passed to SC is
finally inserted during the recovery procedure
discussed below.

LH* supports also bulk inserts. A message with
several records is then multicast to all the servers.
Each server stores then the records whose keys
correspond. LH* file also supports the bulk inserts. A
record can be sent entirely in a bulk message.
Alternatively, one may spread its segments into
several bulk messages. This strategy enhances the

transfer security. Note that one should send also then
the parity segment, computed by the client.

Splits

Splits of segment files are basically performed as for
LH*. Especially, if the new bucket fails during the
split, i.e., before the split is committed, the split
restarts with a new target bucket. The new case is that
a bucket can fail failure during the split. The split is
stopped. The spare is created as for any failed bucket,
using the other segment files to reconstruct all the
unavailable segments, as described below. Then, the
split is restarted from the beginning. Alternatively, the
new bucket sends to the spare all its keys. The spare
moves only the segments that should move and whose
keys are not among the received ones.

Deletes

To (physically) delete R (c), the client sends the key to
all the corresponding (k + 1) buckets. Every bucket
deletes the corresponding segment, as discussed in
[LN95]. Physical deletion being rare in practice, we do
not discuss them more in what follows.

Search
Key search

The search for record R, given its key c, is performed
basically through sending c to k servers, S;, S,... S .
The client uses k unicast messages to the buckets
whose addresses result from the LH* address
computation for each segment file. For the SA
segment files, the bucket address is computed once for
every segment file. For SD segments, there are k
calculus and the results may differ. If all the segments
come, the clients synthesize the record.

As for the inserts, each message carries its intended
bucket number. The servers may forward the
messages, as usually for LH*, or to SC, if the actual
bucket does not match the intended one. If a reply is
missing, despite perhaps several attempts to get it by
the client, the client alerts SC. If only one reply is
missing, the client issues a message to Sy.1. If this
segment comes, the client synthesize the record.
Otherwise, the search fails.

The search can be unsuccessful. In this case, it is not
necessary to have all the servers to reply. The buckets
perform then the hashing m = ¢ mod k. Only the
bucket within S, replies. An alternative strategy is
that no bucket replies and the client declares the search
unsuccessful by time-out. It is highly unlikely that if
the search was successful, the replies from all k
buckets were lost on the way, and the client incorrectly
understood that the search was unsuccessful.

Scan search

LH* supports also the scan search, or the scan in
short, where all records are searched for some non-
key values. For records that are collections of
attributes, the scan search criteria usually consist of a
selection predicate on the attribute values. An LH*
scan search is realized through a parallel search over
each bucket using the selection expression got from
the client. The results are returned to the client also in
parallel. A scan may terminate using a probabilistic
(time-out) termination where only the buckets that
have sent records reply. One may alternatively request
the deterministic termination, where any bucket
replies, with its address, and selected records or a null
message if the search is unsuccessful. The client may
compute whether all the buckets currently existing in
the file replied. If only a few records are to be selected
and the file is large, then the time-out termination is
much faster than the deterministic one.

A scan is sent by the client using either unicast
messages or a multicast message. In the former case,
the client may not know all the corresponding
addresses. An algorithm propagating then the search to
all the servers of the LH* file is defined in [LNS93a].
The drawback of a multicast message is that it is
received by all the sites on the net. Hence it disturbs
also those not serving the file.

A scan in an LH*s file is typically a more complex
operation than in an LH* file with the same records.
Each bucket contains indeed only some non-
consecutive bits of each record. Such a content
provides the high-security, but is about meaningless
for evaluating selection predicates. The only practical
way to proceed is to reconstruct all the records at some
servers, where the parallel scan is performed as for an
LH* file. The reconstruction is essentially a multiway
equi-join on the key value between all the segments.
The servers where it is performed are called join
servers. It should be worth using all the available
segment file servers as join servers and uniformly.
This rationale leads to the following algorithm.

(A4) LH*s scan search

1. Using unicast or multicast, the client sends the scan
search Q in parallel to every bucket m in its image(s)
of each segment file S; ;i=1,2.k.

2. If unicast is used, then each server applies the LH*
parallel search propagation algorithm.

3. For every segment s; (c) with key ¢ at every
server, perform the hashing h (¢) = ¢ mod k +1.
Consider the server of segment s,) (C) as the join
server of the record R (c). If i=h (c), then prepare
for the reception of other segments of R. Otherwise,
send s; (C) to the corresponding address i n file Sy).

4. For every server, perform the join of all the
segments received with the corresponding segments
stored locally, to reconstruct every R.

5. If any expected segment is missing, alert SC and
search Sy, 1. Reconstruct remaining R's.

6. For each server, perform Q and send the result to
the client.

Details of (A4) are discussed in [LN95]. The basic
way for sending the results of Q back to the client is to
simply to send all the selected records by every join
server. Another possibility is to send from the server
of a selected record the messages to the buckets with
the corresponding segments requesting them to be
sent to the client. Finally, the join server may send to
the client only the keys. The client searches then the
corresponding segments itself. The latter approaches
are more costly in CPU and messages, but offer higher
security.

The client may wish the parallel search to terminate in
a deterministic or probabilistic way, i.e., by time-out.
The deterministic termination is costly, as every
bucket has to send a result, perhaps null. For a
probabilistic termination it suffices that one sends only
the selected records or segments. There is no guarantee
that the client gets all the records that it should.

Failure management
Overview

We consider the following kinds of failures :

1. A search at an available server does not find a
segment s; ; i<k ; while the client gets all other
segments.

2. A bucket is unavailable for access.

In case (1), s; is simply reconstructed by the client on
the fly, after additional search of s+ 1. Then, s; is
reinserted, by the client or SC. If more segments are
missing, the record and the segments cannot be
reconstructed from sy, ;. The corresponding recovery
is considered application dependent and beyond the
scope of the basic LH*s.

In case (2), the lack of access is due to the bucket
failure, or to the network failure. Once the access is
reestablished, the bucket restarts the service by
contacting SC. The clients are served again by the
bucket only if SC informs the server that no spare was
produced in the meantime.

If a bucket fails, two strategies exist :

1. One continues, using the available segments, until
the bucket recovers by itself. If k >> 1, the difference
in the workload on these segments should be
negligible. If updates occur, the corresponding
segments are reconstructed when the bucket is up
again.

2. A spare is produced, replacing instantly the failed
bucket.

The choice between strategies (1) and (2) is
application dependent. Strategy (2) clearly offers
higher availability. This strategy is the basic one for
LH*s. The spare production algorithms depend on the
structure, SA or SD, of the segment files. They are
based on those for the LH* with mirrors [LNS96].
Creating a spare

Let it be bucket n, that failed in its segment file, let it
be S;. To create the spare, one should find the segment
buckets of S,..Sy . ; that contain the remaining
segments of every record R whose segment s; was in
the lost bucket. For each lost segment, the remaining
segments of R have to be joined at some join server.
The lost segment may then be recomputed at the join
server, and inserted to the spare being created.

To determine the addresses of the buckets with the
remaining segments, we consider at first the SA or SD
segment files, except for the minimally coupled files.
Let j; be the level of bucket n;. Every S; uses the same
hash functions. Hence, for each S; ;i > 1 ; two cases
may happen:

1. The segments are all in one bucket. This will
happen if there is not yet bucket n,in S; such that n, =
n, or level j, of bucket n; is j, < j;. In particular, if j, <
j1, then bucket n, may contain more records than
bucket n,.

2. The records are in several buckets. This will happen
if j2> ja.

In case (1), n, is at the largest address n, such that:

N, =N, orn, =ny; =n; =24 or n, =n,; 217 or ...

..n, =0

In case (2), buckets to be read are bucket n, itself, its
children, children of children, etc. Hence these buckets
are :

m=n, orm=n;; =n, +25 orm =n;, =n; +2%.. or

_ jp-1 _ _ j _ _
m=n;+2%7 orm =Nyyq =Ny +2% orm =Ny, =

=n, +2 orm=nyy,, =0y w20

The first line corresponds to the addresses of the
children of n;. The next line corresponds to the
children of the first child of n; (in some cases this line
may if fact be a copy of the first line since one may
have n; = ny ;). Then, there are the children of the next
child, etc. [Fig. 2]illustrates the formulae.

Let b; denote the bucket capacity of S;. Let us assume
that the load control policy is the same for both files.
Then, typically, case (1) occurs if b; > b, and case (2)
occurs if by > b; . If b, = by, one has the case of SA
segment files.

The following algorithm is executed by SC and the
buckets' servers, to produce a spare for SA and SD
files.

(A5) Spare creation for an LH* file

Consider that the lost bucket is bucket nin file S;.

1. ForeverysegmentfileS;;i=2..k+1; SC
determines as above the addresses m; of buckets that
could have the remaining segments of the record R
whose segment s; was in bucket n. Let | be the total
number of these buckets.

2. SC allocates a server for the spare and an empty
new bucket n is created. This server receives from SC
all the bucket addresses computed in Step 1.

3. Forevery m;, SC sends the query with level j of
bucket n. It requests every key c such that segment s;
of R (c) was in bucket n, i.e., it requests to test for
every ¢ whether n = h; (c).

4. Every bucket server computes for each ¢ found
through Step (4) the hashing functionh (¢) =2 +c
mod |. The server of bucket m with the segment s
is assumed the join server for the record R (c).

5. For every segment s (c) from step (4), if bucket m
is not at the server computing the function, then the
server sends segment s (c) to bucket m. To allow for
that, the query of step (4) contains also the actual
addressing parameters (i, n) of each segment file, and
the physical addresses of all the buckets found through
step (2).

6. For every bucket m, there is a terminating message
with the number segments sent, expedited by every
bucket from which bucket m expected or got segments.
7. Every record corresponding to the lost bucket is
reconstructed on the join server. The lost segment is
computed and sent to the spare bucket.

8. The spare server expects a termination message
from each join server, containing the number of
records that it should receive.

9. SC sends the physical address of the spare to the
server with the parent of the lost bucket. The server
updates its allocation table.

10. Through Step 4, the algorithm distributes the
computation of the lost segments. A naive approach
would be to centralize this computation on the spare,
making it much less efficient. The goal of the
terminating messages in Steps 6, 9, is the deterministic
termination. Details of Step 5 - 9 are implementation
depended. For slower nets, it may be advantageous
send segments to the join server and from a join server
to the spare in bulks. The parent allocation table is the
only one that points to the spare, as the parent might
need to perform a forwarding, except for that of SC.
Hence, it is the only bucket sever table that needs an
update when the spare is built. Once SC commits the
split, any query to the server of the failed bucket will

be directed to the new one. This, after being forwarded
by the server or the client to SC, as discussed in
Section E| The expected bucket number is necessary
in every query to recognize the situation when the
server of the failed bucket became a spare in turn and
eventually got a new bucket. See [LN95] for further
discussion of the algorithm.

// \\\
[N/
(NN YV YT T T

01 2 3 456 7 8 9101112 13 14 151617

Fig. 2 Children and other descendants of bucket 1
in LH* file with level j =5

Performance
Load factor

The load factor a of a file is defined as o = x R, /bg N,
where x is the number of records, R the record size, bs
the bucket size, and N is the number of buckets in the
file. For an LH* file, one has in practice a=70% -
80 % [LNS93a]. For LH*s file, assuming the load of
a for every segment file, one can show that the
approximate value @' of the overall load factor is :
a=ak/(kk+1) - O[kf].
Assuming k = 4, one ends up with a' =55 - 64 %, i.e.,
15-25 % of more storage with respect to the LH* file,
as the price for the high-availability.
Inserts

Splits, and forwarding should be infrequent with LH*
, and the failures even more rare. An insert to an LH*
file typically costs one message. Hence the typical,
and the best, messaging cost of an insert into LH*; file
is (k + 1) messages. Small buckets for segment files
make splits, and forwarding more frequent. This
increases the average insert cost while building a file,
up to 1.5 (k + 1) messages per insert [LN95]. The
insert cost increases on the other hand usually by three
messages if a segment is sent to a bucket that failed in
the meantime hence a spare was created. It may even
triple in the worst case, thought about impossible in
practice, a discussed in depth in [LN95].

The messaging cost of an insert measured in the
number of messages, is at least (k + 1) times higher for
an LH*s file than for an LH* file. Another

performance aspect is the volume of data sent over the
net. To insert a record of some length Iz, with the key
length Ic , one transfers (I -1)/ k+kl.)=Ig /k
more bytes over the net for an LH*s file than for an
LH* file. For instance for k = 4, it represents only a
25 % increase.

The insert time is determined basically by the CPU
time to send-out and receive the message, and by the
transfer time. For longer records, over Kbytes, or
slower nets, e.g., Ethernet, the transfer time almost
entirely dominates [LNS94]. LH*s typical insert time
should then be only 20 - 25% longer than the LH*
insert time. For a 10 Mb/s net, and 1 KB record, this
leads to the insert time of about 1.25 ms [LNS94]. For
faster nets or shorter records, the CPU time begins to
dominate. The insert time of LH*s becomes then
closer to (k + 1) /2 times LH* time, as the servers work
in parallel, but the client basically serializes the
received messages. The exact figures depends on the
network speed and topology. For a 1 Gb/s net, 100
Mips CPU, and 1 KB record, the CPU time for an
insert into an LH* file may be 51 ps and the transfer
time 20 ps, leading 71 ps per insert [LNS94]. The
same net would lead to the insert time of 140 ps for
the LH* file, i.e., two times greater, for, we recall k =
4. Note that this evaluation still neglects the time to
segment the record that will add some ps.

F F,

b=8 b=8

@)

01 2 6 01 2 6

b=4

()

01 2 6 01 2 6 7 8 9 12

b=6

©

0 1 2 6 01 2 6 7 8 9

Fig. 3 Types of LH*g segment files :
(a) SA-segments, (b) loosely-coupled SD-segments,
and (c¢) minimally coupled SD-segments

Observe finally that segment files can be on different
nets, connected to the client through different
controllers. The transfer time decreases accordingly. It
can become faster than for LH*.

Key search

The calculus similar to the one for inserts, shows that
the typical successful key search costs 2k messages.

An unsuccessful search costs typically 2 messages. In
the theoretically worst case without a failure the cost
of successful search is 9 k + 1 messages. A bucket
failure costs typically an additional message to S+ 1,
and the reply. It might cost up to 10 additional
messages for a very unlucky client. If a failure is
discovered during the search, it costs typically 2
additional messages to Sy .; and 1 message to SC.
With respect to the transfer time, it is about that of
LH* assuming I. << R, as only k segments are sent
back. Hence for large records or slower nets, LH*g
search time is about that of LH*. Otherwise, the
successful search time grows towards 2 k t,, , where t,,
is the time to process a message at the client site. In
the case of a Gb/s net dealt with for the inserts, the
successful search time should be 4 * 56 + 31 = 255 ps,
instead of 87 us for LH* [LNS94]. The unsuccessful
search time is clearly about half of it, plus, perhaps the
time-out.

Scan search

First component of a scan search price is the cost of
query propagation the, let it be m; . One has m; =1, if
the multicast is used. Otherwise, regardless of the
client's image, one has m; = Ng, where Ns is the total
number of buckets of k segment files, as every bucket
is reached by exactly one message. The number of
rounds is greater when the client's image diverges
more, leading to a somehow larger propagation time.
Second component, let it be m,, is the cost of merging
all the records, according to Algorithm A4. This cost
corresponds to all-to-all bucket messaging, and is for a
segment file:
s=0.7b N (k-1) /k,
assuming the load factor a = 0.7 on the average.
Hence one has :
m,=2s
and for SA segment files, one has :
m, =0.7b N (k- 1).
Finally the third component m; depends on the
termination algorithm wished. For the probabilistic
termination, one depends on the query selectivity and :
0 € mg <Ng .
Hence, for SA segment files, one has :

0 <mg< k N
For the deterministic termination, one simply has ms
= Ns , as all the buckets must reply.
A practical value of bisbh >> 1, e.g., b = 1000. Cost
m, is therefore dominant by orders of magnitude. For
k = 4 for instance, and a large file, e.g., Ns = 1000,
and, m, reaches 2.1M messages. Such messaging has
to take at least a few seconds in practice.
Cost m, does not exist for LH*. Hence, scans in LH*
file are cheaper and faster than in the LH*g file. This
cost is the main price for the high-availability and

high-security. If one needs the high-availability only,
LH*\, using mirroring allows for without this cost
[LN96], but at much larger storage cost. On the other
hand, if one segments the records without bit-level
scattering, giving up some security, parallel queries
may be executed more efficiently, as it will appear
below, at the same storage cost as above.

Creating a spare

A spare is created according to Algorithm A5. The
messaging cost involves first a few messages between
SC and a server where the spare is created. Let this
cost be ¢;. One can assume ¢; =2 in practice. Then
RC has to contact servers where the segments used to
compute the lost ones could be (Step 3 of Algorithm
Ab5). For SA segments, the cost, let it be ¢, should
typically be ¢, = k messages. For SD segments, it can
be k< c, < Ns. One has k = Ng for the minimally-
coupled segment files where the segments for Step 3
has to be searched using parallel queries. Otherwise,
one has ¢, < pk, where p is an integer close to max
(bs /b;), where bs denotes the bucket capacity of the
lost bucket, and b; is the bucket capacity of any other
segment file, among the k +1 files.
Next cost component, let it be c; corresponds to the
join of the segments. One has thus on the average :
C3= 0.7 b k,
as there are on the average as many segments to
reconstruct on join servers. Then the reconstructed
segments are sent to the spare which leads to the cost
component ¢, = Cs. Finally, the spare commits to SC,
and SC sends the pointer to the spare's parent. All
together this leads to the following typical costs :
- for SA files, one has:

cs = 2+k +14bk+2,
- for SD files, one has:

2+k +14bk+2 <cg < 2+max (b /
bi)+14bk+2,
- and finally for minimally-coupled segment files, one
has :
2+k +14bk+2 <cs < 2+Ns+14bk+2.
Hence the creation of a spare for minimally-coupled
segment files can be by far the most expensive.
Multiple bucket failure

It is easy to see that any above discussed LH*s
schema supports a single bucket failure. Resistance to
multiple bucket failures depends on whether SA or SD
segment files are used. For SA segment files, with
bucket capacity of b segments, and no load control, a
multiple bucket failure does not create any loss of
records, as long as no failed buckets hold segments of
the same record. This is an unlikely event. For any two
segment files there are indeed only two such buckets.

If this happens anyhow, than one looses a b records,
on the average, i.e., 0.7 b records in practice.
Loosely-coupled and minimally-coupled SD segment
files, increase the probability of data loss in the case
of a multiple failure, but decrease the amount of lost
data. See [LN95] for the corresponding performance
trade-offs.

High-security
Bit-level striping

The bit-level striping as used in an LH* file provides
naturally the high-security in the sense that no record

becomes known to an intruder to a site or to a network.

For every record R of the LH*; file striped at bit-level,
each bucket has one of each k bits of R. If | is the
length of R in bits, the key non-included, there are

s =1(1 - 1/k) bits of R missing from the any bucket.
An intruder to a site has 2° possibilities to complete a
segment to the actual content. This is at least a very
long computation in practice.

Next, even an intruder knowledgeable of LH*
principles, cannot find from the bucket where to find
other segments. A bucket in one segment file does
have the addressing parameters of other files (except
when a scan is in progress). Hence, the intruder would
need to search the missing segments anywhere in the
multicomputer. One can reasonably expect such a task
at least very long in practice.

Finally, LH*s protects against getting knowledge of
the data through the listening on the net. Every
message naturally carries only one from every k bits of
the record. To reconstruct the intercepted segments
with the same key, require k! trials, assuming the
intruder does not know the reconstruction order that is
known implicitly only to the client. If this protection
is not enough, one can easily scramble the same keys
to different values for the transfer in different
segments. For instance, the server can add the segment
number to the key in the message, to be subtracted by
the client. Finally, different segments of a record may
come to the client through different sub-networks,
making the intrusion through the network listening
even more difficult.

Note that SA segment-files are somehow weaken from
the high-security point of view than SD files. If an
intruder to a bucket finds the addresses of other
segments of a record, it knows the addresses of all
other records in the bucket. Such correspondence is
only partial for loosely coupled SD segment-files, and
does not exist for the minimally-coupled files.

Note finally one more nice property of LH*s Even if
an intruder learns the addresses of all the segments of
a record at one time, these addresses change when the
file scales.

Attribute level striping

LH*s, as discussed above, enhances the high-security
at the expense of scan performance. It makes segments
meaningless through the scattering at bit level, in order
to make data secure against intrusions. To make a scan
efficient, through the parallelism, data should in
contrast remain possibly entire. If efficient scans are of
greater importance than the high-security provided by
LH*s with bit-level striping, one should use the
striping at the level of blocks of data.

One choice for LH*g is the attribute-level striping.
Each of k segments of a record R (c) contains then ¢
and some non-key fields of R. Each non-key attribute
is entirely in one (and only one) segment. The
attributes in a segment do not need to be the
consecutive ones in R. The parity segment Sy + 1
contains the parity bits for the fault-tolerance. As the
segments may be now of different length, s, . is of
the length of the longest one.

The attribute level striping lowers the bucket security
level. The intruder disposes of a meaningful part of a
record, thought there is still no addresses in the bucket
of the rest of R. In turn, one may process some scans
without first reconstructing the records. This may lead
to a substantial performance improvement [LN95].
Attribute-level striping also may lead to a better
performance of updates and of the key search. An
update to some attribute A (S) in segment S, requires
access only to S and the parity segment. A search
involving only the key and A (S) requires access to S
only. LH*5 with the attribute-level striping is more
discussed in [LN95].

Related work

The ideas in LH*s originate in the RAID approach
(Redundant Arrays of Inexpensive Disks) [PGK88].
However, LH*s scatters data over a distributed RAM
of servers at a net, instead of a cabinet of disks.
Another difference is that the LH*g stripes at the
logical (record, and perhaps attribute) level, instead of
physical page (sector) level, using the key as the
identifier replicated in each segment. This allows
LH*s to easily scale, unlike the RAID schemes.

The efficiency of the scan search as discussed for
LH*s is not a part of RAID goals. The high-security
goal of LH*s is not a part of RAID idea objectives
neither. It follows the Fragmentation-Redundancy-
Scattering (FRS) proposal for the data management
over the networks, [R94]. One postulates in [R94] and
its references that the FRS approach is among the most
promising ones.

There were other attempts to use striping for network
files. An overview of some of the proposed schemes is
in [T95a]. Among earliest proposals, was the RADD

[ASS94]

[C94]

[D93]

[G96]

[HO95]

(Redundant Arrays of Distributed Disks) schema
[SS90]. The RADD schema is also physical, striping at
page level. Itis also static, designed for slow
networks, and inefficient for the scans. High-security
was not a concern for RADD design.

Between recent high-availability prototypes using a
physical schema, there is the Zebra system, [HO95].
Zebra files are not SDDSs, e.g., since a centralized
directory is required for the address computation. The
system uses striped log-structured files with possibly
large segments. It is not efficient for operating on
individual records, e.g., in the database application
context, [HO95]. In particular there is no provision in
Zebra architecture for the scans.

Conclusion

LH*s appears an attractive SDDS providing the fault-
tolerance and high-security of data. Both features are
of interest to many applications. The price for new
features is a fractional increase to the storage for the
file, and some additional messaging, as compared to
LH*. The additional cost is moderate, especially when
most of file operations are key searches and inserts.
Scans may affect the access performance more,
especially if bit-level striping is used. One may trade-
in some security for the attribute-level striping,
improving the access performance.

Further research should concern performance analysis
and experiments with various design issues. New
ideas for RAID systems may give interesting result
when transposed to the multicomputer environment
[W96]. Given the commercial importance that
multicomputers should have soon, [M96], another
interesting alley should be to expand the Windows NT
file striping capabilities to the LH* capabilities.
Finally, one should investigate high-availability
variants using striping for other SDDSs, RP* schemes
especially [LNS94], [LN96a].

References

Amin, M., Schneider, D.and Singh, V., An Adaptive, Load
Balancing Parallel Join Algorithm. 6th International
Conference on Management of Data, Bangalore, India,
December, 1994.

Culler, D. NOW: Towards Everyday Supercomputing on a
Network of Workstations. EECS Tech. Rep. UC Berkeley.

Devine, R. Design and Implementation of DDH: Distributed
Dynamic Hashing. Int. Conf. on Foundations of Data
Organizations, FODO-93. Lecture Notes in Comp. Sc.,
Springer-Verlag (publ.), Oct. 1993.

Gray, J. Super-Servers: Commodity Computer Clusters Pose
a Software Challemge. Microsoft, 1996.
http:\\www.research microsoft..com\

Hartman J., Ousterhout, J. The Zebra Striped Network File
System. ACM Trans. on Comp. Systems. 13, 3, 95, 275-309.

[KW94]

[LNS93]

[LNS93a]

[LNS94]

[LN95]

[LN96]

[LN96a]

[M96]

[PGKSS]

[R94]

[SS90]

[T95]

[T95a]

[VBWY94]

[W96]

Kroll, B., Widmayer, P. Distributing a Search Tree Among
a Growing Number of Processors. ACM-SIGMOD Int.
Conf. On Management of Data, 1994.

Litwin, W. Neimat, M-A., Schneider, D. LH* : Linear
Hashing for Distributed Files. ACM-SIGMOD Intl. Conf. On
Management of Data, 1993.

Litwin, W., Neimat, M-A., Schneider, D. LH*: A Scalable
Distributed Data Structure. (Nov. 1993). To app. in ACM-
TODS.

Litwin, W., Neimat, M-A., Schneider, D. RP* : A Family of
Order-Preserving Scalable Distributed Data Structures. 20th
Intl. Conf on Very Large Data Bases (VLDB), 1994.

Litwin, W., Neimat, M-A. LH*s : a high-availability and
high-security Scalable Distributed Data Structure. U. Paris
9 Technical Report, 1995.

Litwin, W., Neimat, M-A. High-Availability LH* Schemes
with Mirroring. Intl. Conf. on Cooperating Information
Systems. Brussels, (June 1996), IEEE-Press, 1996.

Litwin, W., Neimat. k-RP* : a High Performance Multi-
attribute Scalable Distributed Data Structure. Intl. Conf. on
Par. and Distr. Inf. Sys., IEEE-PDIS 96. |EEE-Press, 1996.
Microsoft Windows NT Server Cluster Strategy: High
Availability and Scalability with Industry-Standard
Hardware. A White Paper from the Business Systems
Division. Microsoft, 1996.

Patterson, D., Gibson, G., Katz, R., H. A Case for
Redundant Arrays of Inexpensive Disks (RAID). ACM-
Sigmod, 1988.

Randel, B. System Dependability. Future Tendencies in
Computer Science, Control, and Applied Mathematics.
Lecture Notes in Computer Science 653, Springer-Verlag,
1994. A. Bensoussan, J. P. Verjus, ed. .21-50.

Stonebraker, M, Schloss, G. Distributed RAID - A new
multiple copy algorithm. 6th Intl. IEEE Conf. on Data Eng.
IEEE Press, 1990, 430-437.

Tanenbaum, A., S. Distributed Operating Systems. Prentice
Hall, 1995, 601.

Torbjornsen, O. Multi-site Declustering Strategies for Very
High Database Service Availabiity. Thesis Norges Techn.
Hogskoule. IDT Report 1995.2, 176.

Vingralek, R., Breitbart, Y., Weikum, G. Distributed File
Organization with Scalable Cost/Performance. ACM-
SIGMOD Int. Conf. On Management of Data, 1994.
Wilkes, J. & al.. The HP AutoRAID hierarchical storage
system. ACM-TCS, 14, 1, 1996.

